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Preface

Crafting machines that can learn from data to perform intelligent decisions is becoming the dominant 
paradigm in many areas of technology. Acquiring the necessary skill set to perform this task will 
definitely boost your career. Machine Learning Techniques for Text aims to help you in this endeavor, 
focusing specifically on text data and human language. The book will show you how to analyze text data, 
get started with machine learning, and work effectively with the Python libraries often used for these 
tasks, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. You will also have the opportunity 
to work with state-of-the-art deep learning frameworks such as TensorFlow, Keras, and PyTorch.

There is a plethora of resources for mastering the field of machine learning for text, including complex 
theoretical concepts often expressed in a demanding mathematical language. Conversely, other 
resources focus disproportionately on Python code, and the theoretical foundations behind the design 
choices remain shallow. This book steers a middle path to keep the right balance between theory and 
practice. A good metaphor the book’s content builds upon is the relationship between an experienced 
craftsperson and their trainee. Based on the problem, the craftsperson picks a tool from the toolbox, 
explains its utility, and puts it into action. This approach will help you to identify at least one practical 
usage for the method or technique presented.

In each chapter, we focus on one specific case study using real-world datasets. For that reason, the book 
is solution oriented, and it’s accompanied by Python code in the form of Jupyter notebooks to help 
you obtain hands-on experience. This case study approach will allow you to engage more readily in 
learning and not just passively absorb information. Each time, the problem statement is set from the 
beginning, and everybody is aware of the challenge. Even if the discussion temporarily diverts from 
the principal aim, for instance, presenting some fundamental concept, you will be easily reoriented on 
the problem under study. A recurring pattern in the chapters is that we first try to gain some intuition 
on the data and then implement and contrast various solutions.

By the end of this book, you’ll be able to understand and apply various techniques with Python for text 
preprocessing, text representation, dimensionality reduction, machine learning, language modeling, 
visualization, and evaluation. This diverse skillset will allow you to work on similar problems seamlessly.
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Who this book is for
The target audience of this book is professionals in the areas of computer science, programming, 
data science, informatics, business analytics, statistics, language technology, and more who aim for a 
gentle career shift in machine learning for text. Students of relevant disciplines that seek a textbook 
in the field will benefit from the practical aspects of the content and how the theory is presented. 
Finally, professors teaching a similar course can pick pertinent topics in terms of content and difficulty. 
Beginner-level knowledge of Python programming is needed to learn from this book.

What this book covers
Chapter 1, Introducing Machine Learning for Text, presents the main techniques for machine learning 
for text, the relevant terminology, and the implications while using text corpora. You will familiarize 
yourself with the basic concepts behind text processing and the special challenges encountered 
while treating human language. We also discuss the notion of what a machine can learn, along with 
a taxonomy of different types of learning. The chapter completes by introducing the importance of 
visualization and evaluation techniques.

Chapter 2, Detecting Spam Emails, presents a typical exercise in machine learning for text: spam 
detection. The aim is to create classifiers that distinguish between spam and non-spam emails using 
an open source dataset. The chapter elaborates on why it is difficult to feature select on this kind of 
problem and introduces the basic techniques for representing text data and preprocessing it. The 
chapter focuses on supervised learning using the Naïve Bayes and SVM algorithms that are evaluated 
on standard performance metrics.

Chapter 3, Classifying Topics of Newsgroup Posts, deals with the problem of assigning a topic label to 
some piece of text. Again, new concepts and techniques are presented using an open source dataset. 
The exploratory data analysis step is formalized, and you become acquainted with the notion of 
dimensionality reduction using PCA and LDA. The chapter focuses on unsupervised learning. Word 
embedding is the new text representation introduced in the chapter, and the analysis is based on the 
KNN and Random Forests algorithms.

Chapter 4, Extracting Sentiments from Product Reviews, presents an analysis of how to extract the 
sentiment from a given corpus. You will learn how to extend the exploratory data analysis and how 
to use dimensionality reduction not only for visualization but also for feature selection. The focus is 
now on deep learning techniques, and to facilitate their explanation, the chapter discusses linear and 
logistic regression. Concepts related to minimizing loss and gradient descent constitute part of this 
discussion. You will learn how to construct, train, and test a deep neural network model in Keras for 
sentiment analysis.

Chapter 5, Recommending Music Titles, deals with recommender systems and how they can be incorporated 
to suggest music titles to customers. Systems of this kind can be categorized into content-based and 
collaborative-filtering types, and both are presented throughout the chapter. Using an open source 
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dataset, we apply t-SNE and RBM to provide meaningful recommendations for the problem under 
study. Tuning is also an essential part of any machine learning algorithm, and this chapter dedicates 
some discussion on grid search for identifying the optimal combination of the hyperparameters.

Chapter 6, Teaching Machines to Translate, presents various techniques for machine translation. 
Rule-based and statistical machine translation constitute an excellent way to introduce fundamental 
concepts on the topic. You will become familiar with typical NLP methods such as POS tagging, parse 
trees, and NER. The discussion on deep learning models becomes more challenging as the focus is 
now on sequence-to-sequence learning. An extended section describes in detail the famous encoder/
decoder architectures using RNN and LSTM. A seq2seq model is put into action to create an English-
to-French translator, and the chapter ends with a typical evaluation of machine translation systems 
based on the BLEU score.

Chapter 7, Summarizing Wikipedia Articles, performs text summarization with data scraped from 
the internet and Wikipedia, and for this task, you will learn how to incorporate web scraping tools. 
After presenting a few basic text summarization techniques and applying them to the scraped data, 
the discussion moves to more advanced topics. You will learn the concept of attention, frequently 
encountered in deep learning models, and become accustomed with state-of-the-art models such as 
the Transformer. We train a Transformer network on Wikipedia articles to extract their summaries. 
The ROUGE score is used to assess the summarization quality as a measure of performance.

Chapter 8, Detecting Hateful and Offensive Language, deals with how to identify hate and offensive 
language on Twitter. We use the BERT language model based on the Transformer architecture, which 
permits the fine-tuning of pre-trained models, with our custom datasets. We also examine the role 
of the validation set to fine-tune the model’s hyperparameters and the strategies for dealing with 
imbalanced data. The classification tasks are based on boosting algorithms and CNN.

Chapter 9, Generating Text in Chatbots, focuses on the implementation of retrieval-based and generative 
chatbots. A gamut of NLP techniques is presented throughout the chapter starting from simple regular 
expressions. Then, we move into more sophisticated solutions based on deep learning. We present 
how to create language models from scratch or fine-tune a pre-trained one. You will also become 
acquainted with reinforcement learning and also how to create GUIs that can host the implemented 
chatbot. Finally, we present perplexity as an evaluation metric and discuss TensorBoard, which helps 
us shed light on the internal mechanics of deep neural networks.

Chapter 10, Clustering Speech-to-Text Transcriptions, performs clustering on transcribed speech to 
assign them into different groups. We use a system that can automatically transform human speech 
into text and examine how to assess its performance using WER. The clustering methods introduced 
are hierarchical clustering, k-means, and DBSCAN. Finally, there is a relevant discussion on how to 
choose the optimal number of clusters. The chapter concludes by applying soft clustering and LDA 
to identify the topics in the dataset.
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To get the most out of this book
You will need a version of Python installed on your computer—the latest version, if possible. All code 
examples have been tested using Python 3.10 on Windows. However, they should work with future 
version releases too.

The Python examples in the book are available as Jupyter notebooks, and you need to use an IDE such 
as Visual Studio Code (https://code.visualstudio.com/) to run them. You also need a 
Gmail account to download specific resources.

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

In certain notebooks, the code uses reduced versions of the datasets to limit the run time to an 
acceptable level. Feel free to adjust the size of the datasets based on your system configuration. At the 
end of each chapter, you are strongly urged to re-execute the code by alternating the configuration of 
each machine learning algorithm.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Machine-Learning-Techniques-for-Text. If there’s an update 
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The 
CountVectorizer class takes the token pattern argument as the input [a-zA-Z]+, which 
identifies words with lowercase or uppercase letters.”

Software/hardware covered in the book Operating system requirements

Python 3.10 Windows, macOS, or Linux

Microsoft C++ Build Tools Windows

https://code.visualstudio.com/
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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A block of code is set as follows:

import numpy as np

from sklearn.model_selection import train_test_split

# Create the train and test sets.

X_train, X_test, y_train, y_test = train_test_
split(data['tweet'], data['class'], test_size=0.1, 
stratify=data['class'], random_state=123)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

Epoch 7/15

628/628 [==============================] - 753s 1s/step - loss: 
0.2343 - accuracy: 0.9388 - val_loss: 0.3681 - val_accuracy: 
0.8991

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in 
menus or dialog boxes appear in bold. Here is an example: “For example, muscles can be transformed 
into mussels with a minimum of 3 substitutions.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

https://www.packtpub.com/support/errata
https://authors.packtpub.com
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Share Your Thoughts
Once you’ve read Machine Learning Techniques for Text, we’d love to hear your thoughts! Please click 
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/1-803-24238-8
https://packt.link/r/1-803-24238-8
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1
Introducing Machine  

Learning for Text

The language phenomenon is still shrouded in mystery despite the recent achievements in various 
scientific disciplines in terms of understanding how and why it works. Yet, surprisingly, homo sapiens 
are the only species to develop this complex medium for exchanging information, which has led to the 
most striking accomplishments of humankind. Although the oral and gestural forms of language were 
the driving forces over millennia, their written counterpart decisively spread knowledge worldwide. 
Inspired by the expressive power of human texts, this introductory chapter sets the scene for the 
discussion in the following chapters, where we examine how to teach machines to extract meaningful 
interpretations from text corpora.

Building machines that learn from observations is becoming the dominant paradigm due to the 
ever-increasing amount of data that cannot be processed using traditional methods. For instance, text 
data is produced in vast quantities through social network interactions, scientific publications, and 
transcribing multimedia streams, among other things. These resources pose fewer challenges in terms 
of access and storage, which have become relatively inexpensive. Conversely, we need techniques to 
extract, visualize, and analyze text data to leverage this massive amount of unstructured information.

The content of this chapter is meant to introduce the main techniques for machine learning (ML) 
for text, the relevant terminology, and the implications while using text corpora. For that reason, you 
might need to revisit its content while navigating through the book.

In this chapter, we go through the following topics:

•	 Introducing the human language as a data resource

•	 Understanding how machines learn

•	 Identifying the basic taxonomy of machine learning algorithms

•	 Understanding the importance of visualization and evaluation techniques
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The language phenomenon
Human language is a structured communication system based on grammar and vocabulary. Although 
other animals can incorporate some form of communication, human language has a distinctive 
feature; it is compositional. We can combine or recombine sets of words and create new sentences 
with little effort. With the odd exception of the waggle dance of honeybees for sharing information 
about the direction and distance to patches of flowers, no other animal communication system puts 
messages together like this. Human language is also referential in that we can refer to people, objects, 
or situations that occurred in the past or could occur in the future. Language’s ability to transmit 
information about things that aren’t physically or temporally present is unique. Another fascinating 
characteristic is that it is modality-independent. A spoken language, for instance, uses the auditive 
modality for communication, while the Braille system used by visually impaired people is based on the 
tactile modality. Similarly, we use the visual modality in writing and the sign language of deaf people.

The reasons for the emergence of language are so far unknown. Still, hypotheses contend that it 
occurred as a vehicle for exchanging information, as a byproduct of our tool development, or as a 
way to keep human groups cohesive. It is also not clear when human language evolved. Based on 
the current scientific data, we can trace its origin back to 150,000 to 200,000 years ago in eastern or 
southern Africa. It is suggested that it evolved from earlier pre-linguistic systems among our pre-human 
ancestors and increased in complexity through cultural transmission over many generations of speakers. 
During this process, many languages disappeared, and there are currently over 570 known extinct 
cases. More than 7,000 languages are spoken worldwide, some by millions and some by a few dozen 
people, endangered by extinction.

Interesting fact
It is believed that an Italian cardinal, Giuseppe Gasparo Mezzofanti (1774-1849), who spoke 
some fifty or sixty languages of the most widely separated families with considerable fluency, 
holds the record for multilingualism.

Linguistics is the main field for studying human languages and applying scientific methods to questions 
about their nature and function. Nevertheless, many of these questions overlap with other fields in 
the life sciences, social sciences, and humanities, making the study of languages a multidisciplinary 
undertaking. Besides theoretical inquiry, there is also an urgent need for practical applications. Applying 
computational approaches to linguistic questions requires a different mixture of disciplines, focusing 
more on language technology.

In the new machine age era, delegating the effort of analyzing human language to a computer is an 
attractive option simply because it can process a more significant amount of data in a fraction of the 
time, but the execution of this task is not merely quantitative. We can also teach a machine to perform 
it efficiently. The focus of the current book is to present techniques in practical scenarios that allow a 
machine to extract meaningful insights from text data and act intelligently to solve a particular problem.



The data explosion 3

The data explosion
We live in a data-driven world that steadily becomes even more data-driven. The innate tendency of 
humans to impart information, especially in written form, has caused an abundance of data for various 
languages and domains. Besides people’s willingness to share information, advances in computer 
connectivity and storage have paved the way for an explosion in the volume of text data. For instance, 
hundreds of billions of emails are sent daily, and thousands of tweets are posted per second. Frantically, 
people and businesses are churning out lots of unstructured data with an increased volume, velocity, 
and variety, but with less veracity. The four Vs are defining properties of big data and shape our digital 
world. For that reason, they need some attention:

•	 Volume: Big data is about this volume now reaching unprecedented heights. Digital storage 
has become so cheap and vast in its capacity that we can practically keep all the digital data 
we’re creating.

•	 Velocity: The speed at which data is generated, transmitted, and changed happens at an increasing 
velocity. It becomes hard to manage the data flow to make the best decisions. For instance, an 
online store should capture and process every mouse click while its users browse the website 
and provide instant recommendations.

•	 Variety: Big data consists of different forms; this is where variety comes into the scene. For 
example, interacting with an online chatbot entails structured data, such as the connection time 
or the user ID, and unstructured data, such as what is typed during the interaction.

•	 Veracity: This refers to the trustworthiness of data when making crucial decisions. Does it 
include biases, duplication, or inconsistencies?

Thus, confronting an overwhelmingly large amount of unstructured text data is unavoidable in 
most industries, and being able to cope is an essential skill. You can check out https://www.
internetlivestats.com/ for a real-time sense of big data.

The era of AI
At the end of the first section of this chapter, we mentioned that we are interested in teaching machines 
to act intelligently. This task entails the simulation of human intelligence in machines to make them 
think and act like real humans, but, of course, this is far more than a modest goal. Even from the 
creation of the first computers in the 1940s, the expectation was that machines would match humans 
in general intelligence. Back then, there was a great degree of optimism that this could happen in 
the foreseeable future. These great expectations paved the way for an emerging field called artificial 
intelligence (AI) that has faced several hype and investment cycles ever since, followed by periods of 
disappointment in the mid-70s and mid-90s. The great promise of AI has been recorded in myriad 
science fiction novels and movies. Since then, the high expectations inspired by this vision have not 
been fully met. Also, the term intelligent is still controversial due to whether a machine can actually 
exhibit human-level intelligence or just mimic a few of its manifestations.

https://www.internetlivestats.com/
https://www.internetlivestats.com/
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Anyway, AI, once considered to be science fiction, has now partially become a reality. Although 
achieving human-level intelligence or even superintelligence seems hopelessly complicated, AI 
applications are ubiquitous in several sectors and activities of human life. You are probably using these 
applications even if you are unaware of this fact. According to Andrew Ng, a pioneer in the field, AI 
is the new electricity and has the potential to liberate humanity from a lot of mental drudgery, just as 
the industrial revolution emancipated many people from physical labor.

Nevertheless, if AI has been around for decades, why did it just start taking off now? Three main 
reasons were the driving forces for this situation:

•	 Data availability: Digital devices, such as laptops and smartphones, are now an extension of 
the human body, generating vast amounts of data we can feed our learning algorithms – for 
example, email text, tweet posts, or video and audio transcriptions.

•	 Computational scale: The advancement in hardware permitted the creation of intelligence 
models that are big enough to take advantage of the huge datasets currently available.

•	 New algorithms: The AI community has grown significantly, which has led to the creation of 
more powerful algorithms.

According to their ability to imitate human behavior, AI systems can be categorized into three 
main types:

•	 Artificial narrow intelligence (ANI): ANI, also known as narrow AI or weak AI, is goal-
oriented with a limited range of abilities. All current AI applications, such as Siri, chatbots, 
and self-driving cars, fall under this category.

•	 Artificial general intelligence (AGI): AGI, also called strong AI, will be achieved when the 
relevant applications exhibit human-level intelligence.

•	 Artificial superintelligence (ASI): ASI is where things become scary and machines are more 
capable than humans in every possible way. According to a dystopian view, this might even 
lead to our extinction!

The list of AI applications is endless. To provide a few related examples, consider extracting the 
sentiment from a piece of text, recommending products based on user reviews, translating a sentence 
to another language, or creating a summary from a document. These are part of the case studies 
presented in the next chapters.
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Relevant research fields
Parallel to AI, another field has continuously gained traction over the past decades. ML is how a 
computer system develops its intelligence, used by AI to carry out its tasks. Their relation is shown 
in Figure 1.1:

Figure 1.1 – How AI, ML, DL, and NLP are related

ML is a subset of AI and its intelligence is encompassed by a model trained over several iterations on 
a large amount of data. With minimal human intervention, the ML algorithm tries to identify patterns 
from past experiences and develop an efficient model to make predictions. As the ML algorithm is 
exposed to more data over time, its performance improves.

Interesting fact
The term machine learning was coined in 1959 by Arthur Samuel as the field of study that allows 
computers to learn without being explicitly programmed.

One way to perform training is to use a special kind of architecture stemming from deep learning 
(DL). DL algorithms mimic the human brain to incorporate intelligence into a machine. The output 
of these algorithms has been shown to offer better performance, especially when the amount of 
data becomes very large. The reason is that the performance of traditional ML algorithms reaches 
a plateau as you add more data. In the case of DL, on the other hand, the performance continues to 
increase – see Figure 1.2:
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Figure 1.2 – Performance versus the amount of data for traditional ML and DL

In any case, keep in mind this well-known aphorism: all models are wrong, but some are useful. In 
simple terms, all models fall short of the complexities of real-world problems and are our best effort 
for a given task. As an ML expert, your job is to minimize the error of any trained model as possible.

Finally, Figure 1.1 includes another large field of research called natural language processing (NLP), 
which, as the name suggests, deals with processing natural language data. The term natural is related 
to the fact that NLP works with languages that have evolved naturally in humans without conscious 
planning. As a counter-example, consider any programming language, which is artificially constructed. 
Human text data is usually available through a corpus (or corpora if plural) that consists of a collection 
of texts. When there is only one language, it is called a monolingual corpus; for more than one language, 
it is referred to as a multilingual corpus.

NLP must overcome many challenges related to the peculiarities of human language. For example, 
when we speak or write, we tend to omit a lot of common sense knowledge, assuming that the reader 
possesses it. The inherent ambiguity of natural language can also not be resolved without the proper 
context. Consider, for example, the word break, which can be interpreted as a pause from doing 
something. Still, it can also refer to a personal or social separation. Besides lexical ambiguity, we can 
encounter syntactic ambiguity, as in the following phrase: The fish is ready to eat. Is the fish ready to 
be fed, or can we eat the fish now?

Many other phenomena introduce more limitations and problems to NLP. For instance, identifying 
irony and sarcasm is a typical example where certain positive or negative words actually connote the 
opposite, such as yeah, sure. In the same way, slang terms might not be available in a dictionary, making 
it difficult to process the text that includes them. Even worse, human texts can contain stereotypes and 
biases that prohibit their use in systems for the general public. Finally, when dealing with low-resource 
languages, we lack sufficient resources to implement complex systems. These are a few of the possible 
problems when dealing with natural languages.
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Note that NLP does not necessarily involve ML; we can program computers to process and analyze 
large amounts of natural language data without ML. However, the sweet spot lies where the two fields 
overlap, and our playground is the intersection of ML, DL, and NLP (check Figure 1.1 and the area 
with the grid texture).

The following section provides more insight into ML.

The machine learning paradigm
The essence behind computer programming is to dictate to machines how to perform laborious tasks 
quickly and without errors. Calculating the average value of a series of numbers, resizing a photograph, 
streaming a video clip, and many other tasks are well-defined processes that require sophisticated 
software to execute. When performing more complex tasks, however, providing all the execution 
steps is error-prone and can often lead to brittle and buggy programs. Unsurprisingly, regular updates 
of our favorite computer programs claim to fix various problems – until, of course, the next update.

In the last two decades, we are experiencing a strong paradigm shift in commercial software development 
based on ideas that have been available for several decades. Instead of explicitly defining all the 
execution steps for a program, we can give pairs of examples in the form of possible input and the 
desired output. In this configuration, the machine tries to create (learn) its representation (model) on 
the examples so that the correct output is emitted when a new input arrives. Consider the example in 
Figure 1.3, which shows two processes for creating cakes:

Figure 1.3 – Traditional (left) versus new software development paradigm (right)

In the traditional paradigm, the machine (in this case, a human) takes the ingredients and creates 
different cake variants by following the recipes. Conversely, in the new software development paradigm, 
they are given multiple combinations of ingredient-cake pairs. After many trial-and-error iterations 
of baking cakes, they can presumably identify the recipe for each type. Then, it is straightforward to 
create similar cakes in the future.
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So what is the benefit of the second approach? Following a readymade recipe and obtaining a delicious 
cake seems much easier in this contrived example – and, in fact, it is! However, there is a catch. In 
most practical problems, we are never given complete recipes. Suppose, for example, the pastry chef 
does not reveal all the preparation steps. It is, therefore, better to exploit the abundance of data (if 
possible) to train a model that elicits all the intermediate steps in preparing the cakes.

On the other hand, when there is a lack of data or the task is well-defined, the traditional paradigm 
is still the direction to follow.

Taxonomy of machine learning techniques
The discussion in the previous section should have helped you understand the reason behind the 
ML paradigm. However, it only corresponds to one type of learning. ML algorithms can be trained 
differently, with each method having advantages and disadvantages. Broadly, they can be categorized 
into four main types: supervised learning, unsupervised learning, semi-supervised learning, and 
reinforcement learning. Let’s examine each one in the following sections.

Supervised learning

In supervised learning, also called inductive learning, we work with labeled data that teaches the model 
to yield the desired output. For example, a dataset with emails labeled as either spam or non-spam can 
be used to train a model for spam filtering. It’s called supervised because by knowing the correct label 
for each sample, we can supervise the learning process and correct the model during training, just 
like a teacher in the classroom. This type of learning is extremely powerful in extracting cause-and-
effect relationships from the data, but we need to contemplate the cost of creating the initial dataset. 
Labeling observations from scratch is not a trivial task and requires considerable effort most of the 
time. In the following sections, we provide more details about this method.

Predictive modeling

In ML, the main aim is to create a model that can make predictions using data from the past. There 
are infinite examples of this kind – for instance, warning of potential health risks based on current 
health factors, predicting the future value of apartments in some geographical regions, determining 
the probability of bankruptcy before approving a loan, and so on. These tasks are part of predictive 
modeling, which uses mathematical and computational methods to calculate the probability of 
various outcomes. The process typically starts with data collection and the formulation of one or 
more statistical models. Then, these models are used to make predictions and can be adjusted as new 
data becomes available.

The simplest form of mathematical predictive modeling approximates function f from an input variable 
x to an output variable y. The example of Figure 1.4 shows how a curve fits various data points in a 
two-dimensional space. In this case, the parameters of the curve, like its order, are well-defined and 
can explain how a new input x is mapped to an output y. Computational predictive modeling, on the 
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other hand, produces models that are not easy to explain because they do not provide insight into the 
factors that lead to a specific input or output result:

Figure 1.4 – Mathematical prediction model

Generally, we can have two types of predictive modeling depending on the output variable. First, we 
refer to classification when the output is a discrete variable, such as a list with categories or labels. 
Then, we refer to regression for continuous output variables, such as real numbers. In the following 
sections, we discuss the two methods.

Classification

Let’s put aside the mechanics of the learning algorithm for the moment and concentrate on the 
available information and the result we want it to produce. Having a dataset with labeled examples at 
our disposal, we can split the classification process into two phases: training and inference. The process 
is summarized in Figure 1.5:

Figure 1.5 – Typical training and inference phases in supervised ML
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During the training phase, the samples of the labeled dataset are used to train the model. Note that 
other names for a sample are row, instance record, observation, or example. The model generates a 
prediction for each instance in the dataset that we compare to the correct label. The specific comparison 
yields an error value—each time, the error is used as feedback to the model, which improves itself 
after many training iterations. The process terminates when the model only makes a few mistakes on 
the labeled data. Finally, during the inference phase, the trained model is used to make predictions on 
unseen data, which hopefully should be correct. Next, we will shed more light on the actual learning 
process during classification.

How machines learn

Suppose that Figure 1.6 includes a set of labeled emails in a two-dimensional space based on two 
hypothetical characteristics, T1 and T2. A spam email is denoted with the o symbol, whereas a 
non-spam email is denoted with the symbol x:

Figure 1.6 – Different layouts of labeled data in the two-dimensional space

During the training phase, the ML algorithm examines the annotated corpus to identify patterns that 
separate spam from non-spam. The simplest way to separate these points in Figure 1.6 (A) is to draw 
a line between the two groups. An ML algorithm can learn the equation of this line (mathematically 
expressed as y = x). Everything above the line denotes non-spam and everything under the line is the 
opposite. Clear, isn’t it?

In many practical situations, however, the layout of the points is less than ideal. Consider, for example, 
Figure 1.6 (B). In this case, the algorithm needs to identify a second-order polynomial that is described 
by the equation 𝑦𝑦 = 𝑥𝑥2 . What about the situation in Figure 1.6 (C)? Now, a higher-order polynomial 
should be estimated, and the situation becomes even more complicated in Figure 1.6 (D). This time, 
the separation line is not even a function. In practical situations, the difficulty of finding the best 
separation line scales very quickly, so another kind of trick must be employed.

How about experimenting with the coordinates of the space? Imagine moving the data points from 
the lower dimensional space they currently belong to into a higher order one. The assumption is that 
if the correct transformation were applied, the points would be much easier to separate in the new 
coordinate system. Thus, the problem concerns finding the right transformation for a specific dataset. 
The three examples in Figure 1.7 demonstrate this process visually:
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Figure 1.7 – Examples of transformation of data points to a higher-dimensional space

Let’s apply a transformation function 𝜙𝜙  to each one of the data points. In plots (A) and (B), the data 
is transformed from one-dimensional to two-dimensional, whereas in plot (C), it’s transformed from 
two-dimensional to three-dimensional. Notice that for (B), the modulo operator (mod) produces the 
remainder of an integer division. After this step, we can immediately identify the points as linearly 
separable using the dashed line (or hyperplane). The line and the hyperplane are called decision 
boundaries and partition the underlying space into different areas.

We have seen a transformation in 3D, but ML algorithms typically work in much higher dimensions. 
For that reason, our human brain, wired to think in 3D, finds it difficult to conceptualize how data 
is transformed in a multi-dimensional space. In practice, however, ML algorithms use sophisticated 
approaches to look for the decision boundaries without the need to increase the already high dimensions 
of the space. The problem with mapping the data points to higher dimensional spaces is that it can be 
very compute-intensive. The key point to retain is that these algorithms aim to transform the input 
data in a way that can easily help identify the boundaries.

In the following sections, we will briefly discuss the other types of learning.
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Regression

Regression is used to understand the relationship between dependent and independent variables. 
Regression models allow the prediction of numerical values based on different data points, such as 
stock prices, sale profits, population, and more. As in classification, there is a training and inference 
phase. However, these processes output continuous values instead of discrete ones.

Unsupervised learning

Unsupervised learning can work with unlabeled data, which is usually easier to acquire. For that 
reason, it is used mainly to discover hidden patterns in a set of observations without any human 
intervention. Unfortunately, unsupervised learning techniques are hard to evaluate because, without 
any reference, we cannot tell what is good learning and what is not. Next, we will present the three 
typical unsupervised learning techniques.

Clustering

Clustering is a convenient technique when looking for meaningful groups or collections from unlabeled 
observations. In theory, data points in the same cluster exhibit similar features, while data points in 
different clusters should have highly dissimilar properties. Clustering can be used, for example, to 
identify the topics of discussion in social media posts or to identify groups of households that are similar 
to each other. These observations are organized into groups in both cases based on a similarity metric.

Association analysis

Association analysis is a methodology that helps us discover interesting relationships hidden in large 
datasets. These relationships can be represented in two forms: association rules or sets of frequent items. 
The rules can identify, for example, that there is a strong relationship between certain products in a 
supermarket because customers frequently buy them together. This information is important to these 
stores and opens new opportunities for cross-selling their products. For example, they can place these 
products together in a basket, advertise the whole list to people that buy a fraction of these products, 
or offer discounts when they are all bought in one purchase. In addition, when dealing with text data, 
association analysis can assist in identifying dependencies between words and mining keywords that 
appear together frequently.

Dimensionality reduction

Dimensionality reduction is another typical unsupervised learning technique. It applies a transformation 
of data from a high-dimensional space to a low-dimensional one. The specific transformation retains 
most of the data’s initial information with minimal loss. The utility of the method is twofold – first, to 
remove redundant information from the samples and thus increase the performance of the learning 
task, and second, to help visualize the samples in 1D, 2D, or 3D, to provide a better intuition on the 
data before starting the analysis.
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Semi-supervised learning

Semi-supervised learning represents the intermediate category between supervised and unsupervised 
learning algorithms. It can be considered a method that helps alleviate the effort needed for data 
labeling by using a small number of labeled samples and a large pool of unlabeled data for model 
training. The process can be summarized as follows. First, we train a model using the smaller set of 
labeled examples. Then, we apply it to the bigger number of unlabeled instances, keeping the most 
confident predictions. The labels generated for the samples in the large pool are called pseudo labels. 
Then, we train a new model using the extended dataset and repeat the process, adding more pseudo 
labels in each iteration. If the data is appropriate to the task, we should experience a steady increase 
in performance.

Reinforcement learning

Reinforcement learning problems are markedly different from the ones of supervised, unsupervised, 
and semi-supervised categories. Reinforcement learning is the task of learning through trial and error, 
having an agent take actions within an environment – see Figure 1.8:

Figure 1.8 – The reinforcement learning loop

The agent is most commonly an algorithm that must discover through interaction with its environment 
which sequence of actions is the best to accomplish a given goal. Specifically, the agent acts in an 
environment, and its actions yield a reward and a new state. Contrary to the other forms of learning, the 
agent directly affects the information provided by the environment. In supervised learning problems, 
for example, the model just consumes the underlying data and cannot impact it in any way.

Let’s examine the following example to understand this ambitious type of learning better. First, consider 
yourself an agent and the world around you the environment you can interact with. Performing the 
action of going to college led to the state of getting a job with a high salary as a reward, but, in the same 
way, we can also have negative rewards. For instance, staying up late as an action led to the state of 
being sleepy and obtaining the reward of failing the exam. The next two sections will conclude the 
chapter with two recurring topics appearing throughout the book.
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Visualization of the data
The vast majority of all human communication is visual. The reason is that we are wired to understand 
images instantly while we need to process text. For instance, visual artifacts such as maps have been 
around for centuries to help understand data, so it is not surprising that most people are visual learners 
and can easily retain the information they see. In addition, visuals make it much easier to spot patterns 
and identify anomalies, which is critical to people working with data. Technology ignited the need 
for better data visualizations to represent and present data.

A good visualization should encompass three characteristics: being trustworthy, accessible, and elegant. 
By saying it is trustworthy, we refer to the fact that the data is honestly portrayed. For example, if the 
visual suggests a relationship, trend, or correlation, the data should support that relationship; otherwise, 
we are just deceiving the audience. An accessible visualization refers to whether we understand our 
audience and how they perceive and interpret the information presented. For instance, using technical 
notation for a non-technical audience reduces their capacity to benefit from the presentation. Finally, 
the visualization should be clear and aesthetically beautiful.

There are four types of information visuals:

•	 Conceptual-declarative: They aim to simplify complex concepts using visual metaphors. For 
example, the food pyramid and the water cycle visualizations fall under this category.

•	 Conceptual-exploratory: They are used for brainstorming sessions and have an informal type. 
They aim to gather ideas from multiple people either on a whiteboard or on a piece of paper.

•	 Data-driven-exploratory: They are the most complex type and have a formal character. They 
aim to find trends and provide an in-depth analysis of the underlying data.

•	 Data-driven-declarative: They are the most common type, typically found in newspapers, 
magazines, and the internet. They have a formal style but are generally simple.

This book uses visualization techniques from the data-driven categories extensively to attack two 
main problems – first, to extract some evident information or identify possible problems with the data 
before resorting to analysis, and second, to report on the performance of the implemented systems. 
We have deliberately incorporated different libraries and plot types to expose the reader to as many 
options as possible.

Evaluation of the results
Determining the value or worth of something in terms of quantity and quality is the process of 
evaluation. The increasing sophistication of text systems necessitates evaluation frameworks that 
measure the stated objectives and anticipated results. These frameworks serve a dual role – assessing 
different versions of the same product and also comparing similar systems. The topic of evaluation 
has grown into an essential part of systems development and a research field of its own.
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Numerous convenient methods have been put forth to evaluate ML systems, which frequently make 
use of various computer- and human-centered metrics, most commonly known as objective and 
subjective evaluation. For example, using objective metrics allows us to measure something consistently 
and typically defies interpretation; either the spam detector achieved an accuracy above a threshold 
or didn’t. On the other hand, subjective evaluations are more expensive and time-consuming to set 
up but reflect the system’s actual performance with real users.

It is not uncommon that during the optimization of one metric, performance has deteriorated on 
another one. In the following chapters, we will have the opportunity to discuss the trade-offs during this 
situation. In addition, each metric typically evaluates a specific aspect of the system. Thus, combining 
multiple evaluation results for a fair comparison is often essential.

Another crucial aspect is prioritizing the errors based on their severity for the given problem. For 
instance, suppose that you take a test for COVID-19, and the result is erroneous. Then, one possible 
faulty outcome is that the test says you have coronavirus when you don’t (type I error). Otherwise, 
it says you don’t have coronavirus when you actually do (type II error). Which of the two errors is 
more critical to minimize? The type II error, most probably, and similar questions arise for many 
practical problems.

In each chapter, we will introduce relevant metrics to measure the performance of the systems 
implemented. Moreover, we will discuss different implications and how to avoid possible pitfalls.

Summary
In this introductory chapter, we provided a high-level description of the themes covered in the book. 
First, we discussed different aspects of human language and what makes it such a unique resource. 
On the other hand, it can pose many challenges when processing human text, with ambiguity being 
the most serious threat.

Then, the discussion went into the current data explosion identifying the defining properties of 
big data. For AI, we presented its main types and the driving forces that led to its take-off. We also 
introduced the cutting-edge topics of ML, DL, and NLP. In this context, we set our own playground 
at the intersection of these fields. In this context, we set our own playground at the intersection of 
these fields.

A large part of the chapter was dedicated to the new paradigm shift in software programming imposed 
by ML. We also discussed the basic taxonomy of this emerging field. Finally, we concluded with the 
visualization and evaluation topics encountered many times throughout the book.

The next chapter deals with the first case study, spam detection.





2
Detecting Spam Emails

Electronic mail is a ubiquitous internet service for exchanging messages between people. A typical 
problem in this sphere of communication is identifying and blocking unsolicited and unwanted 
messages. Spam detectors undertake part of this role; ideally, they should not let spam escape uncaught 
while not obstructing any non-spam.

This chapter deals with this problem from a machine learning (ML) perspective and unfolds as a series 
of steps for developing and evaluating a typical spam detector. First, we elaborate on the limitations of 
performing spam detection using traditional programming. Next, we introduce the basic techniques 
for text representation and preprocessing. Finally, we implement two classifiers using an open source 
dataset and evaluate their performance based on standard metrics.

By the end of the chapter, you will be able to understand the nuts and bolts behind the different 
techniques and implement them in Python. But, more importantly, you should be capable of seamlessly 
applying the same pipeline to similar problems.

We go through the following topics:

•	 Obtaining the data

•	 Understanding its content

•	 Preparing the datasets for analysis

•	 Training classification models

•	 Realizing the tradeoffs of the algorithms

•	 Assessing the performance of the models

Technical requirements
The code of this chapter is available as a Jupyter Notebook in the book’s GitHub repository: https://
github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/
tree/main/chapter-02.

https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02
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The Notebook has an in-built step to download the necessary Python modules required for the practical 
exercises in this chapter. Furthermore, for Windows, you need to download and install Microsoft C++ 
Build Tools from the following link: https://visualstudio.microsoft.com/visual-
cpp-build-tools/.

Understanding spam detection
A spam detector is software that runs on the mail server or our local computer and checks the inbox 
to detect possible spam. As with traditional letterboxes, an inbox is a destination for electronic mail 
messages. Generally, any spam detector has unhindered access to this repository and can perform 
tens, hundreds, or even thousands of checks per day to decide whether an incoming email is spam 
or not. Fortunately, spam detection is a ubiquitous technology that filters out irrelevant and possibly 
dangerous electronic correspondence.

How would you implement such a filter from scratch? Before exploring the steps together, look at a 
contrived (and somewhat naive) spam email message in Figure 2.1. Can you identify some key signs 
that differentiate this spam from a non-spam email?

Figure 2.1 – A spam email message

Even before reading the content of the message, most of you can immediately identify the scam from 
the email’s subject field and decide not to open it in the first place. But let’s consider a few signs (coded 
as T1 to T4) that can indicate a malicious sender:

•	 T1 – The text in the subject field is typical for spam. It is characterized by a manipulative style 
that creates unnecessary urgency and pressure.

https://visualstudio.microsoft.com/visual-cpp-build-tools/
https://visualstudio.microsoft.com/visual-cpp-build-tools/
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•	 T2 – The message begins with the phrase Dear MR tjones. The last word was probably extracted 
automatically from the recipient’s email address.

•	 T3 – Bad spelling and the incorrect use of grammar are potential spam indicators.

•	 T4 – The text in the body of the message contains sequences with multiple punctuation marks 
or capital letters.

We can implement a spam detector based on these four signs, which we will hereafter call triggers. 
The detector classifies an incoming email as spam if T1, T2, T3, and T4 are True simultaneously. The 
following example shows the pseudocode for the program:

IF (subject is typical for spam)

    AND IF (message uses recipients email address)

        AND IF (spelling and grammar errors)

            AND IF (multiple sequences of marks-caps) THEN

                print("It's a SPAM!")

It’s a no-brainer that this is not the best spam filter ever built. We can predict that it blocks legitimate 
emails and lets some spam messages escape uncaught. We have to include more sophisticated triggers 
and heuristics to improve its performance in terms of both types of errors. Moreover, we need to be 
more specific about the cut-off thresholds for the triggers. For example, how many spelling errors 
(T3) and sequences (T4) make the relevant expressions in the pseudocode True? Is T3 an appropriate 
trigger in the first place? We shouldn’t penalize a sender for being bad at spelling! Also, what happens 
when a message includes many grammar mistakes but contains few sequences with capital letters? 
Can we still consider it spam? To answer these questions, we need data to support any claim. After 
examining a large corpus of messages annotated as spam or non-spam, we can safely extract the 
appropriate thresholds and adapt the pseudocode.

Can you think of another criterion? What about examining the message’s body and checking whether 
certain words appear more often? Intuitively, those words can serve as a way to separate the two types 
of emails. An easy way to perform this task is to visualize the body of the message using word clouds 
(also known as tag clouds). With this visualization technique, recurring words in the dataset (excluding 
articles, pronouns, and a few other cases) appear larger than infrequent ones.

One possible implementation of word clouds in Python is the word_cloud module (https://
github.com/amueller/word_cloud). For example, the following code snippet presents 
how to load the email shown in Figure 2.1 from the spam.txt text file (https://github.
com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/
chapter-02/data), make all words lowercase, and extract the visualization:

# Import the necessary modules.

import matplotlib.pyplot as plt

https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02/data
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02/data
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02/data
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from wordcloud import WordCloud

# Read the text from the file spam.txt.

text = open('./data/spam.txt').read()

# Create and configure the word cloud object.

wc = WordCloud(background_color="white", max_words=2000)

# Generate the word cloud image from the text.

wordcloud = wc.generate(text.lower())

# Display the generated image.

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis("off")

Figure 2.2 shows the output plot:

Figure 2.2 – A word cloud of the spam email

The image suggests that the most common word in our spam message is virus (all words are lowercase). 
Does the repetition of this word make us suspicious? Let’s suppose yes so that we can adapt the 
pseudocode accordingly:

     ...

            AND IF (multiple sequences of marks-caps) THEN

                AND IF (common word = "virus") THEN

                    print("It's a SPAM!")
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Is this new version of the program better? Slightly. We can engineer even more criteria, but the problem 
becomes insurmountable at some point. It is not realistic to find all the possible suspicious conditions 
and deciphering the values of all thresholds by hand becomes an unattainable goal.

Notice that techniques such as word clouds are commonplace in ML problems to explore text data 
before resorting to any solution. We call this process Exploratory Data Analysis (EDA). EDA provides 
an understanding of where to direct our subsequent analysis and visualization methods are the primary 
tool for this task. We deal with this topic many times throughout the book.

It’s time to resort to ML to overcome the previous hurdles. The idea is to train a model from a corpus 
with labeled examples of emails and automatically classify new ones as spam or non-spam.

Explaining feature engineering

If you were being observant, you will have spotted that the input to the pseudocode was not the actual 
text of the message but the information extracted from it. For example, we used the frequency of the 
word virus, the number of sequences in capital letters, and so on. These are called features and the 
process of eliciting them is called feature engineering. For many years, this has been the central task 
of ML practitioners, along with calibrating (fine-tuning) the models.

Identifying a suitable list of features for any ML task requires domain knowledge – comprehending 
the problem you want to solve in-depth. Furthermore, how you choose them directly impacts the 
algorithm’s performance and determines its success to a significant degree. Feature engineering can 
be challenging, as we can overgenerate items in the list. For example, certain features can overlap with 
others, so including them in the subsequent analysis is redundant. On the other hand, specific features 
might be less relevant to the task because they do not accurately represent the underlying problem. 
Table 2.1 includes a few examples of good features:

Table 2.1 – Examples of feature engineering
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Given the preceding table, the rationale for devising features for any ML problem should be clear. 
First, we need to identify the critical elements of the problem under study and then decide how to 
represent each element with a range of values. For example, the value of an apartment is related to its 
size in square meters, which is a real positive number.

This section provided an overview of spam detection and why attacking this problem using traditional 
programming techniques is suboptimal. The reason is that identifying all the necessary execution steps 
manually is unrealistic. Then, we debated why extracting features from data and applying ML is more 
promising. In this case, we provide hints (as a list of features) to the program on where to focus, but 
it’s up to the algorithm to identify the most efficient execution steps.

The following section discusses how to extract the proper features in problems involving text such 
as emails, tweets, movie reviews, meeting transcriptions, or reports. The standard approach, in this 
case, is to use the actual words. Let’s see how.

Extracting word representations
What does a word mean to a computer? What about an image or an audio file? To put it simply, nothing. 
A computer circuit can only process signals that contain two voltage levels or states, similar to an 
on-off switch. This representation is the well-known binary system where every quantity is expressed 
as a sequence of 1s (high voltage) and 0s (low voltage). For example, the number 1001 in binary is 9 
in decimal (the numerical system humans employ). Computers utilize this representation to encode 
the pixels of an image, the samples of an audio file, a word, and much more, as illustrated in Figure 2.3:

Figure 2.3 – Image pixels, audio samples, and words represented with numbers

Based on this representation, our computers can make sense of the data and process it the way we wish, 
such as by rendering an image on the screen, playing an audio track, or translating an input sentence 
into another language. As the book focuses on text, we will learn about the standard approaches for 
representing words in a piece of text data. More advanced techniques are a subject in the subsequent 
chapters.
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Using label encoding

In ML problems, there are various ways to represent words; label encoding is the simplest form. For 
example, consider this quote from Aristotle: a friend to all is a friend to none. Using the label-encoding 
scheme and a dictionary with words to indices (a:0, all:1, friend:2, is:3, none:4, to:5), we can produce 
the mapping shown in Table 2.2:

Table 2.2 – An example of using label encoding

We observe that a numerical sequence replaces the words in the sentence. For example, the word 
friend maps to the number 2. In Python, we can use the LabelEncoder class from the sklearn 
module and feed it with the quote from Aristotle:

from sklearn.preprocessing import LabelEncoder

# Create the label encoder and fit it with data.

labelencoder = LabelEncoder()

labelencoder.fit(["a", "all", "friend", "is", "none", "to"])

# Transform an input sentence.

x = labelencoder.transform(["a", "friend", "to", "all", "is", 
"a", "friend", "to", "none"])

print(x)

>> [0 2 5 1 3 0 2 5 4]

The output is the same array as the one in Table 2.2. There is a caveat, however. When an ML algorithm 
uses this representation, it implicitly considers and tries to exploit some kind of order among the 
words, for example, a<friend<to (because 0 < 2 < 5). This order does not exist in reality. On the 
other hand, label encoding is appropriate if there is an ordinal association between the words. For 
example, the good, better, and best triplet can be encoded as 1, 2, and 3, respectively. Another 
example is online surveys, where we frequently use categorical variables with predefined values for each 
question, such as disagree=-1, neutral=0, and agree=+1. In these cases, label encoding can 
be more appropriate, as the associations good<better<best and disagree<neutral<agree 
make sense.
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Using one-hot encoding

Another well-known word representation technique is one-hot encoding, which codifies every word 
as a vector with zeros and a single one. Notice that the position of the one uniquely identifies a specific 
word; consequently, no two words exist with the same one-hot vector. Table 2.3 shows an example of 
this representation using the previous input sentence from Aristotle:

Table 2.3 – An example of using one-hot encoding

Observe that the first column in the table includes all unique words. The word friend appears at 
position 3, so its one-hot vector is [0, 0, 1, 0, 0, 0]. The more unique words in a dataset, 
the longer the vectors are because they depend on the vocabulary size.

In the code that follows, we use the OneHotEncoder class from the sklearn module:

from sklearn.preprocessing import OneHotEncoder

# The input.

x = [['a'], ['friend'], ['to'], ['all'], ['is'], ['a'], 
['friend'], ['to'], ['none']]

# Create the one-hot encoder.

onehotencoder = OneHotEncoder()

# Fit and transform.

enc = onehotencoder.fit_transform(x).toarray()

print(enc.T)

>> [[1. 0. 0. 0. 0. 1. 0. 0. 0.]

 [0. 0. 0. 1. 0. 0. 0. 0. 0.]
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 [0. 1. 0. 0. 0. 0. 1. 0. 0.]

 [0. 0. 0. 0. 1. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 1.]

 [0. 0. 1. 0. 0. 0. 0. 1. 0.]]

Looking at the code output, can you identify a drawback to this approach? The majority of the elements 
in the array are zeros. As the corpus size increases, so does the vocabulary size of the unique words. 
Consequently, we need bigger one-hot vectors where all other elements are zero except for one. Matrixes 
of this kind are called sparse and can pose challenges due to the memory required to store them.

Next, we examine another approach that addresses both ordinal association and sparsity issues.

Using token count encoding

Token count encoding, also known as the Bag-of-Words (BoW) representation, counts the absolute 
frequency of each word within a sentence or a document. The input is represented as a bag of words 
without taking into account grammar or word order. This method uses a Term Document Matrix (TDM) 
matrix that describes the frequency of each term in the text. For example, in Table 2.4, we calculate 
the number of times a word from a minimal vocabulary of seven words appears in Aristotle’s quote:

Table 2.4 – An example of using token count encoding

Notice that the corresponding cell in the table contains the value 0 when no such word is present 
in the quote. In Python, we can convert a collection of text documents to a matrix of token counts 
using the CountVectorizer class from the sklearn module, as shown in the following code:

from sklearn.feature_extraction.text import CountVectorizer

# The input.

X = ["a friend to all is a friend to none"]

# Create the count vectorizer.

Vectorizer = CountVectorizer(token_pattern='[a-zA-Z]+')

# Fit and transform.

X = vectorizer.fit_transform(X)
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print(vectorizer.vocabulary_)

>> {'a': 0, 'friend': 2, 'to': 5, 'all': 1, 'is': 3, 'none': 4}

Next, we print the token counts for the quote:

print(x.toarray()[0])

>> [2 1 2 1 1 2]

The CountVectorizer class takes the token pattern argument as the input [a-zA-Z]+, which 
identifies words with lowercase or uppercase letters. Don’t worry if the syntax of this pattern is not yet 
clear. We are going to demystify it later in the chapter. In this case, the code informs us that the word 
a (with id 0) appears twice, and therefore the first element in the output array [2, 1, 2, 1, 1, 
2] is 2. Similarly, the word none, the fifth element of the array, appears once.

We can continue by extending the vectorizer using a property of human languages: the fact that certain 
word combinations are more frequent than others. We can verify this characteristic by performing 
Google searches of various word combinations inside double quotation marks. Each one yields a 
different number of search results, an indirect measure of their frequency in language.

When reading a spam email, we don’t usually focus on isolated words and instead identify patterns in 
word sequences that trigger an alert in our brain. How can we leverage this fact in our spam detection 
problem? One possible answer is to use n-grams as tokens for CountVectorizer. In simple terms, 
n-grams illustrate word sequences, and due to their simplicity and power, they have been extensively 
used in Natural Language Processing (NLP) applications. There are different variants of n-grams 
depending on the number of words that we group; for a single word, they are called unigrams; for 
two words, bigrams, and three words trigrams. Figure 2.4 presents the first three order n-grams for 
Aristotle’s quote:

Figure 2.4 – Unigrams, bigrams, and trigrams for Aristotle’s quote

We used unigrams in the previous Python code, but we can now add the ngram_range argument 
during the vectorizer construction and use bigrams instead:

from sklearn.feature_extraction.text import CountVectorizer

# The input.
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X = ["a friend to all is a friend to none"]

# Create the count vectorizer using bi-grams.

vectorizer = CountVectorizer(ngram_range=(2,2), token_
pattern='[a-zA-Z]+')

# Fit and transform.

x = vectorizer.fit_transform(X)

print(vectorizer.vocabulary_)

>> {'a friend': 0, 'friend to': 2, 'to all': 4, 'all is': 1, 
'is a': 3, 'to none': 5}

Next, we print the token counts for the quote:

print(x.toarray()[0])

>> [2 1 2 1 1 1]

In this case, the friend to bigram with an ID of 2 appears twice, so the third element in the output 
array is 2. For the same reason, the to none bigram (the last element) appears only once.

In this section, we discussed how to utilize word frequencies to encode a piece of text. Next, we will 
present a more sophisticated approach that uses word frequencies differently. Let’s see how.

Using tf-idf encoding

One limitation of BoW representations is that they do not consider the value of words inside the 
corpus. For example, if solely frequency were of prime importance, articles such as a or the would 
provide the most information for a document. Therefore, we need a representation that penalizes these 
frequent words. The remedy is the term frequency-inverse document frequency (tf-idf) encoding 
scheme that allows us to weigh each word in the text. You can consider tf-idf as a heuristic where 
more common words tend to be less relevant for most semantic classification tasks, and the weighting 
reflects this approach.

From a virtual dataset with 10 million emails, we randomly pick one containing 100 words. Suppose 
that the word virus appears three times in this email, so its term frequency (tf) is 3

100 = 0.03 . Moreover, 
the same word appears in 1,000 emails in the corpus, so the inverse document frequency (idf) is 
equal to log⁡(100000001000 ) = 4 . The tf-idf weight is simply the product of these two statistics: 0.03 ∙ 4 = 0.12 . 
We reach a high tf-idf weight when we have a high frequency of the term in the random email and a 
low document frequency of the same term in the whole dataset. Generally, we calculate tf-idf weights 
with the following formula:

𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 ∙ log⁡(
𝑁𝑁
𝑑𝑑𝑑𝑑𝑖𝑖

) 
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Where:

•	 𝑤𝑤𝑖𝑖,𝑗𝑗 =  Weight of word i in document j

•	 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 =  Frequency of word i in document j

•	 𝑁𝑁 =  Total number of documents

•	 𝑑𝑑𝑑𝑑𝑖𝑖 =  Number of documents containing word i

Performing the same calculations in Python is straightforward. In the following code, we use 
TfidfVectorizer from the sklearn module and a dummy corpus with four short sentences:

from sklearn.feature_extraction.text import TfidfVectorizer

# Create a dummy corpus.

corpus = [

        'We need to meet tomorrow at the cafeteria.',

        'Meet me tomorrow at the cafeteria.',

        'You have inherited millions of dollars.',

        'Millions of dollars just for you.']

# Create the tf-idf vectorizer.

vectorizer = TfidfVectorizer()

# Generate the tf-idf matrix.

tfidf = vectorizer.fit_transform(corpus)

Next, we print the result as an array:

print(tfidf.toarray())

>> [[0.319  0.319    0.       0.      0.       0.

  0.        0.       0.319    0.      0.404    0.

  0.319     0.404    0.319    0.404   0.]

 [0.388     0.388    0.       0.      0.       0.

  0.        0.493    0.388    0.      0.       0.

  0.388     0.       0.388    0.      0.]

 [0.        0.       0.372    0.      0.472    0.472

  0.        0.       0.       0.372   0.       0.372

  0.        0.       0.       0.      0.372]

 [0.        0.       0.372    0.472   0.       0.
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  0.472     0.       0.       0.372   0.    0.372

  0.        0.       0.       0.      0.372]]

What does this output tell us? Each of the four sentences is encoded with one tf-idf vector of 17 
elements (this is the number of unique words in the corpus). Non-zero values show the tf-idf weight 
for a word in the sentence, whereas a value equal to zero signifies the absence of the specific word. If 
we could somehow compare the tf-idf vectors of the examples, we can tell which pair resembles more. 
Undoubtedly, 'You have inherited millions of dollars.' is closer to 'Millions 
of dollars just for you.' than the other two sentences. Can you perhaps guess where 
this discussion is heading? By calculating an array of weights for all the words in an email, we can 
compare it with the reference arrays of spam or non-spam and classify it accordingly. The following 
section will tell us how.

Calculating vector similarity

Mathematically, there are different ways to calculate vector resemblances, such as cosine similarity (cs) 
or Euclidean distance. Specifically, cs is the degree to which two vectors point in the same direction, 
targeting orientation rather than magnitude (see Figure 2.5).

Figure 2.5 – Three cases of cosine similarity

When the two vectors point in the same direction, the cs equals 1 (in A in Figure 2.5); when they 
are perpendicular, it is 0 (in B in Figure 2.5), and when they point in opposite directions, it is -1 (in 
C in Figure 2.5). Notice that only values between 0 to 1 are valid in NLP applications since the term 
frequencies cannot be negative.

Consider now an example where A, B, and C are vectors with three elements each, so that A = (4, 4, 
4), B = (1, 7, 5), and C = (-5, 5, 1). You can think of each number in the vector as a coordinate in an 
xyz-space. Looking at Figure 2.6, A and B seem more similar than C. Do you agree?
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Figure 2.6 – Three vectors A, B, and C in a three-dimensional space

We calculate the dot product (signified with the symbol •) between two vectors of the same size by 
multiplying their elements in the same position. 𝑉𝑉 = (𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3)  and 𝑈𝑈 = (𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3)  are two vectors, so 
their dot product is 𝑉𝑉 • 𝑈𝑈 = 𝑣𝑣1 ∙ 𝑢𝑢1 + 𝑣𝑣2 ∙ 𝑢𝑢2+𝑣𝑣3 ∙ 𝑢𝑢3 . In our example, 𝐴𝐴 • 𝐵𝐵 = 4 ∙ 1 + 4 ∙ 7 + 4 ∙ 5 = 52,  
𝐴𝐴 • 𝐶𝐶 = 4 ∙ (−5) + 4 ∙ 5 + 4 ∙ 1 = 4   and 𝐵𝐵 • 𝐶𝐶 = 1 ∙ (−5) + 7 ∙ 5 + 5 ∙ 1 = 35 . Additionally, the magnitude 

of the vector 𝑉𝑉  is defined as ‖𝑉𝑉‖ = √𝑣𝑣12 + 𝑣𝑣22 + 𝑣𝑣32  and in our case, ‖𝐴𝐴‖ = √42 + 42 + 42 = √48 , ‖𝐵𝐵‖ = √75 ,  
and ‖𝐶𝐶‖ = √51 .

Therefore, we obtain the following:

 cos⁡(𝐴𝐴, 𝐵𝐵) = 52
√48 × √75

≈ 0.87 , cos⁡(𝐴𝐴, 𝐶𝐶) =
4

√48 × √51
≈ 0.08 , and cos⁡(𝐵𝐵, 𝐶𝐶) = 35

√75 × √51
≈ 0.57 .

The results confirm our first hypothesis that A and B are more similar than C.

In the following code, we calculate the cs of the tf-idf vectors between the corpus’s first and second 
examples:

from sklearn.metrics.pairwise import cosine_similarity

# Convert the matrix to an array.

tfidf_array = tfidf.toarray()
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# Calculate the cosine similarity between the first amd second 
example.

print(cosine_similarity([tfidf_array[0]], [tfidf_array[1]]))

>> [[0.62046087]]

We also repeat the same calculation between all tf-idf vectors:

# Calculate the cosine similarity among all examples.

print(cosine_similarity(tfidf_array))

>> [[1.        0.62046    0.        0.        ]

 [0.62046        1.        0.        0.        ]

 [0.            0.        1.        0.5542    ]

 [0.            0.        0.5542    1.        ]]

As expected, the value between the first and second examples is high and equal to 0.62. Between the 
first and the third example, it is 0, 0.55 between the third and the fourth, and so on.

Exploring tf-idf has concluded our discussion on the standard approaches for representing text data. 
The importance of this step should be evident, as it relates to the machine’s ability to create models that 
better understand textual input. Failing to get good representations of the underlying data typically leads 
to suboptimal results in the later phases of analysis. We will also encounter a powerful representation 
technique for text data in Chapter 3, Classifying Topics of Newsgroup Posts.

In the next section, we will go a step further and discuss different techniques of preprocessing data 
that can boost the performance of ML algorithms.

Executing data preprocessing
During the tf-idf discussion, we mentioned that articles often do not help convey the critical information 
in a document. What about words such as but, for, or by? Indeed, they are ubiquitous in English texts 
but probably not very useful for our task. This section focuses on four techniques that help us remove 
noise from the data and reduce the problem’s complexity. These techniques constitute an integral part 
of the data preprocessing phase, which is crucial before applying more sophisticated methods to 
the text data. The first technique involves splitting an input text into meaningful chunks, while the 
second teaches us how to remove low informational value words from the text—the last two focus 
on mapping each word to a root form.
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Tokenizing the input

So far, we have used the term token with the implicit assumption that it always refers to a word (or an 
n-gram) independently of the underlying NLP task. Tokenization is a more general process where 
we split textual data into smaller components called tokens. These can be words, phrases, symbols, or 
other meaningful elements. We perform this task using the nltk toolkit and the word_tokenize 
method in the following code:

# Import the toolkit.

import nltk

nltk.download('punkt')

# Tokenize the input text.

wordTokens = nltk.word_tokenize("a friend to all is a friend to 
none")

print(wordTokens)

>> ['a', 'friend', 'to', 'all', 'is', 'a', 'friend', 'to', 
'none']

As words are the tokens of a sentence, sentences are the tokens of a paragraph. For the latter, we can 
use another method in nltk called sent_tokenize and tokenize a paragraph with three sentences:

# Tokenize the input paragraph.

sentenceTokens = nltk.sent_tokenize("A friend to all is a 
friend to none.  
A friend to none is a friend to all. A friend is a friend.")

print(sentenceTokens)

>> ['A friend to all is a friend to none.', 'A friend to none 
is a friend to all.', 'A friend is a friend.']

This method uses the full stop as a delimiter (as in, a character to separate the text strings) and the 
output in our example is a list with three elements. Notice that using the full stop as a delimiter is not 
always the best solution. For example, the text can contain abbreviations; thus, more sophisticated 
solutions are required to compensate for this situation.

In the Using token count encoding section, we saw how CountVectorizer used a pattern to split 
the input into multiple tokens and promised to demystify its syntax later in the chapter. So, it’s time 
to introduce regular expressions (regexp) that can assist with the creation of a tokenizer. These 
expressions are used to find a string in a document, replace part of the text with something else, or 
examine the conformity of some textual input. We can improvise very sophisticated matching patterns 
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and mastering this skill demands time and effort. Recall that the unstructured nature of text data 
means that it requires preprocessing before it can be used for analysis, so regexp are a powerful tool 
for this task. The following table shows a few typical examples:

Table 2.5 – Various examples of regular expressions

A pattern using square brackets ([]) matches character ranges. For example, the [A-Z] regexp matches 
Q because it is part of the range of capital letters from A to Z. Conversely, the same lowercase character 
is not matched. Quantifiers inside curly braces match repetitions of patterns. In this case, the [A-Z]
{3} regexp matches a sequence of BCD. The ^ and $ characters match a pattern at the beginning 
and end of a sentence, respectively. For example, the ^[0-9] regexp matches a 4ever string, as it 
starts with the number four. The + symbol matches one or more repetitions of the pattern, while * 
matches zero or more repetitions. A dot, ., is a wildcard for any character.

We can go a step further and analyze a more challenging regexp. Most of us have already used web 
forms that request an email address input. When the provided email is not valid, an error message is 
displayed. How does the web form recognize this problem? Obviously, by using a regexp! The general 
format of an email address contains a local-part, followed by an @ symbol, and then by a domain – for 
example, local-part@domain. Figure 2.7 analyzes a regexp that can match this format:

Figure 2.7 – A regexp for checking the validity of an email address
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This expression might seem overwhelming and challenging to understand, but things become apparent 
if you examine each part separately. Escaping the dot character is necessary to remove its special 
meaning in the context of a regexp and ensure that it is used literally. Specifically, ., a regexp, matches 
any word, whereas \. matches only a full stop.

To set things into action, we tokenize a valid and an invalid email address using the regexp from 
Figure 2.7:

# Create the Regexp tokenizer.

tokenizer = nltk.tokenize.
RegexpTokenizer(pattern='^([a-z0-9_\.-]+)@([a-z0-9_\.-]+)\.([a-
z\.]{2,6})$')

# Tokenize a valid email address.

tokens = tokenizer.tokenize("john@doe.com")

print(tokens)

>> [('john', 'doe', 'com')]

The output tokens for the invalid email are as follows:

# Tokenize a non-valid email address.

tokens = tokenizer.tokenize("john-AT-doe.com")

print(tokens)

>> []

In the first case, the input, john@doe.com, is parsed as expected, as the address’s local-part, domain, 
and suffix are provided. Conversely, the second input does not comply with the pattern (it misses the 
@ symbol), and consequently, nothing is printed in the output.

There are many other situations where we need to craft particular regexps for identifying patterns in 
a document, such as HTML tags, URLs, telephone numbers, and punctuation marks. However, that’s 
the scope of another book!

Removing stop words

A typical task during the preprocessing phase is removing all the words that presumably help us focus 
on the most important information in the text. These are called stop words and there is no universal list 
in English or any other language. Examples of stop words include determiners (such as another and 
the), conjunctions (such as but and or), and prepositions (such as before and in). Many online 
sources are available that provide lists of stop words and it’s not uncommon to adapt their content 
according to the problem under study. In the following example, we remove all the stop words from 
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a spam text using a built-in set from a wordcloud module named STOPWORDS. We also include 
three more words in the set to demonstrate its functionality:

from wordcloud import WordCloud, STOPWORDS

# Read the text from the file data.txt.

text = open('./data/spam.txt').read()

# Get all stopwords and update with few others.

sw = set(STOPWORDS)

sw.update(["dear", "virus", "mr"])

# Create and configure the word cloud object.

wc = WordCloud(background_color="white", stopwords=sw, max_
words=2000)

Next, we generate the word cloud plot:

# Generate the word cloud image from the text.

wordcloud = wc.generate(text.lower())

# Display the generated image.

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis("off")

The output is illustrated in Figure 2.8:

Figure 2.8 – A word cloud of the spam email after removing the stop words
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Take a moment to compare it with the one in Figure 2.2. For example, the word virus is missing in 
the new version, as this word was part of the list of stop words.

The following section will cover another typical step of the preprocessing phase.

Stemming the words

Removing stop words is, in essence, a way to extract the juice out of the corpus. But we can squeeze the 
lemon even more! Undoubtedly, every different word form encapsulates a special meaning that adds 
richness and linguistic diversity to a language. These variances, however, result in data redundancy 
that can lead to ineffective ML models. In many practical applications, we can map words with the 
same core meaning to a central word or symbol and thus reduce the input dimension for the model. 
This reduction can be beneficial to the performance of the ML or NLP application.

This section introduces a technique called stemming that maps a word to its root form. Stemming is 
the process of cutting off the end (suffix) or the beginning (prefix) of an inflected word and ending 
up with its stem (the root word). So, for example, the stem of the word plays is play. The most 
common algorithm in English for performing stemming is the Porter stemmer, which consists of five 
sets of rules (https://tartarus.org/martin/PorterStemmer/) applied sequentially to 
the word. For example, one rule is to remove the “-ed” suffix from a word to obtain its stem only if the 
remainder contains at least one vowel. Based on this rule, the stem of played is play, but the stem 
for led is still led.

Using the PorterStemmer class from nltk in the following example, we observe that all three 
forms of play have the same stem:

# Import the Porter stemmer.

from nltk.stem import PorterStemmer

# Create the stemmer.

stemmer = PorterStemmer()

# Stem the words 'playing', 'plays', 'played'.

stemmer.stem('playing')

>> 'play'

Let’s take the next word:

stemmer.stem('plays')

>> 'play'

https://tartarus.org/martin/PorterStemmer/
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Now, check played:

stemmer.stem('played')

>> 'play'

Notice that the output of stemming doesn’t need to be a valid word:

# Stem the word 'bravery'

stemmer.stem('bravery')

>> 'braveri'

We can even create our stemmer using regexps and the RegexpStemmer class from nltk. In the 
following example, we search for words with the ed suffix:

# Import the Porter stemmer

from nltk.stem import RegexpStemmer

# Create the stemmer matching words ending with 'ed'.

stemmer = RegexpStemmer('ed')

# Stem the verbs 'playing', 'plays', 'played'.

stemmer.stem('playing')

>> 'playing'

Let’s check the next word:

stemmer.stem('plays')

>> 'plays'

Now, take another word:

stemmer.stem('played')

>> 'play'

The regexp in the preceding code matches played; therefore, the stemmer outputs play. The two 
other words remain unmatched, and for that reason, no stemming is applied. The following section 
introduces a more powerful technique to achieve similar functionality.
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Lemmatizing the words

Lemmatization is another sophisticated approach for reducing the inflectional forms of a word to a 
base root. The method performs morphological analysis of the word and obtains its proper lemma (the 
base form under which it appears in a dictionary). For example, the lemma of goes is go. Lemmatization 
differs from stemming, as it requires detailed dictionaries to look up a word. For this reason, it’s slower 
but more accurate than stemming and more complex to implement.

WordNet (https://wordnet.princeton.edu/) is a lexical database for the English language 
created by Princeton University and is part of the nltk corpus. Superficially, it resembles a thesaurus 
in that it groups words based on their meanings. WordNet is one way to use lemmatization inside 
nltk. In the example that follows, we extract the lemmas of three English words:

# Import the WordNet Lemmatizer.

from nltk.stem import WordNetLemmatizer

nltk.download('wordnet')

nltk.download('omw-1.4')

# Create the lemmatizer.

lemmatizer = WordNetLemmatizer()

# Lemmatize the verb 'played'.

lemmatizer.lemmatize('played', pos='v')

>> 'play'

Observe that the lemma for played is the same as its stem, play. On the other hand, the lemma 
and stem differ for led (lead versus led, respectively):

# Lemmatize the verb 'led'.

lemmatizer.lemmatize('led', pos='v')

>> 'lead'

There are also situations where the same lemma corresponds to words with different stems. The 
following code shows an example of this case where good and better have the same lemma but 
not the same stem:

# Lemmatize the adjective 'better'.

lemmatizer.lemmatize('better', pos='a')

>> 'good'

https://wordnet.princeton.edu/
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The differences between lemmatization and stemming should be apparent from the previous examples. 
Remember that we use either method on a given dataset and not both simultaneously.

The focus of this section has been on four typical techniques for preprocessing text data. In the case 
of word representations, the way we apply this step impacts the model’s performance. In many similar 
situations, identifying which technique works better is a matter of experimentation. The following 
section presents how to implement classifiers using an open source corpus for spam detection.

Performing classification
Up until this point, we have learned how to represent and preprocess text data. It’s time to make use 
of this knowledge and create the spam classifier. First, we put all the pieces together using a publicly 
available corpus. Before we proceed to the training of the classifier, we need to follow a series of typical 
steps that include the following:

1.	 Getting the data

2.	 Splitting it into a training and test set

3.	 Preprocessing its content

4.	 Extracting the features

Let’s examine each step one by one.

Getting the data

The SpamAssassin public mail corpus (https://spamassassin.apache.org/old/
publiccorpus/) is a selection of email messages suitable for developing spam filtering systems. It 
offers two variants for the messages, either in plain text or HTML formatting. For simplicity, we will 
use only the first type in this exercise. Parsing HTML text requires special handling – for example, 
implementing your own regexps! The term coined to describe the opposite of spam emails is ham 
since the two words are related to meat products (spam refers to canned ham). The dataset contains 
various examples divided into different folders according to their complexity. This exercise uses the files 
within these two folders: spam_2 (https://github.com/PacktPublishing/Machine-
Learning-Techniques-for-Text/tree/main/chapter-02/data/20050311_spam_2/
spam_2) for spam and hard_ham (https://github.com/PacktPublishing/Machine-
Learning-Techniques-for-Text/tree/main/chapter-02/data/20030228_
hard_ham/hard_ham) for ham.

https://spamassassin.apache.org/old/publiccorpus/
https://spamassassin.apache.org/old/publiccorpus/
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02/data/20050311_spam_2/spam_2
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02/data/20050311_spam_2/spam_2
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02/data/20050311_spam_2/spam_2
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02/data/20030228_hard_ham/hard_ham
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02/data/20030228_hard_ham/hard_ham
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-02/data/20030228_hard_ham/hard_ham
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Creating the train and test sets

Initially, we read the messages for the two categories (ham and spam) and split them into training 
and testing groups. As a rule of thumb, we can choose a 75:25 (https://en.wikipedia.org/
wiki/Pareto_principle) split between the two sets, attributing a more significant proportion 
to the training data. Note that other ratios might be preferable depending on the size of the dataset. 
Especially for massive corpora (with millions of labeled instances), we can create test sets with just 
1% of the data, which is still a significant number. To clarify this process, we divide the code into the 
following steps:

1.	 First, we load the ham and spam datasets using the train_test_split method. This method 
controls the size of the training and test sets for each case and the samples that they include:

import email

import glob

import numpy as np

from operator import is_not

from functools import partial

from sklearn.model_selection import train_test_split

# Load the path for each email file for both categories.

ham_files = train_test_split(glob.glob(./data/20030228_
hard_ham/hard_ham/*'), random_state=123)

spam_files = train_test_split(glob.glob(./data/20050311_
spam_2/spam_2/*'), random_state=123)

2.	 Next, we read the content of each email and keep the ones without HTML formatting:

# Method for getting the content of an email.

def get_content(filepath):

    file = open(filepath, encoding='latin1')

    message = email.message_from_file(file)

    for msg_part in message.walk():

        # Keep only messages with text/plain content.

        if msg_part.get_content_type() == 'text/plain':

            return msg_part.get_payload()

# Get the training and testing data.

ham_train_data = [get_content(i) for i in ham_files[0]]

https://en.wikipedia.org/wiki/Pareto_principle
https://en.wikipedia.org/wiki/Pareto_principle
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ham_test_data = [get_content(i) for i in ham_files[1]]

spam_train_data = [get_content(i) for i in spam_files[0]]

spam_test_data = [get_content(i) for i in spam_files[1]]

3.	 For our analysis, we exclude emails with empty content. The filter method with None as 
the first argument removes any element that includes an empty string. Then, the filtered output 
is used to construct a new list using list:

# Keep emails with non-empty content.

ham_train_data = list(filter(None, ham_train_data))

ham_test_data = list(filter(None, ham_test_data))

spam_train_data = list(filter(None, spam_train_data))

spam_test_data = list(filter(None, spam_test_data))

4.	 Now, let’s merge the spam and ham training sets into one (do the same for their test sets):

# Merge the train/test files for both categories.

train_data = np.concatenate((ham_train_data, spam_train_
data))

test_data = np.concatenate((ham_test_data, spam_test_
data))

5.	 Finally, we assign a class label for each of the two categories (ham and spam) and merge them 
into common training and test sets:

# Assign a class for each email (ham = 0, spam = 1).

ham_train_class = [0]*len(ham_train_data)

ham_test_class = [0]*len(ham_test_data)

spam_train_class = [1]*len(spam_train_data)

spam_test_class = [1]*len(spam_test_data)

# Merge the train/test classes for both categories.

train_class = np.concatenate((ham_train_class, spam_
train_class))

test_class = np.concatenate((ham_test_class, spam_test_
class))

Notice that in step 1, we also pass random_state in the train_test_split method to make 
all subsequent results reproducible. Otherwise, the method performs a different data shuffling in each 
run and produces random splits for the sets.
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In this section, we have learned how to read text data from a set of files and keep the information 
that makes sense for the problem under study. After this point, the datasets are suitable for the next 
processing phase.

Preprocessing the data

It’s about time to use the typical data preprocessing techniques that we learned earlier. These include 
tokenization, stop word removal, and lemmatization. Let’s examine the steps one by one:

1.	 First, let’s tokenize the train or test data:

from nltk.stem import WordNetLemmatizer

from nltk.tokenize import word_tokenize

from sklearn.feature_extraction.text import ENGLISH_STOP_
WORDS

# Tokenize the train/test data.

train_data = [word_tokenize(i) for i in train_data]

test_data = [word_tokenize(i) for i in test_data]

2.	 Next, we remove the stop words by iterating over the input examples:

# Method for removing the stop words.

def remove_stop_words(input):

    result = [i for i in input if i not in ENGLISH_STOP_
WORDS]

    return result

# Remove the stop words.

train_data = [remove_stop_words(i) for i in train_data]

test_data = [remove_stop_words(i) for i in test_data]

3.	 Now, we create the lemmatizer and apply it to the words:

# Create the lemmatizer.

lemmatizer = WordNetLemmatizer()

# Method for lemmatizing the text.

def lemmatize_text(input):

    return [lemmatizer.lemmatize(i) for i in input]
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# Lemmatize the text.

train_data = [lemmatize_text(i) for i in train_data]

test_data = [lemmatize_text(i) for i in test_data]

4.	 Finally, we reconstruct the data in the two sets by joining the words separated by a space and 
return the concatenated string:

# Reconstruct the data.

train_data = [" ".join(i) for i in train_data]

test_data = [" ".join(i) for i in test_data]

As a result, we have at our disposal two Python lists, namely train_data and test_data, 
containing the initial text data in a processed form suitable for proceeding to the next phase.

Extracting the features

We continue with the extraction of the features of each sentence in the previously created datasets. This 
step uses tf-idf vectorization after training the vectorizer with the training data. There is a problem 
though, as the vocabulary in the training and test sets might differ. In this case, the vectorizer ignores 
unknown words, and depending on the mismatch level, we might get suboptimal representations for the 
test set. Hopefully, as more data is added to any corpus, the mismatch becomes smaller, so ignoring a 
few words has a negligible practical impact. An obvious question is – why not train the vectorizer with 
the whole corpus before the split? However, this engenders the risk of getting performance measures 
that are too optimistic later in the pipeline, as the model has seen the test data at some point. As a rule 
of thumb, always keep the test set separate and only use it to evaluate the model.

In the code that follows, we vectorize the data in both the training and test sets using tf-idf:

from sklearn.feature_extraction.text import TfidfVectorizer

# Create the vectorizer.

vectorizer = TfidfVectorizer()

# Fit with the train data.

vectorizer.fit(train_data)

# Transform the test/train data into features.

train_data_features = vectorizer.transform(train_data)

test_data_features = vectorizer.transform(test_data)
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Now, the training and test sets are transformed from sequences of words to numerical vectors. From 
this point on, we can apply any sophisticated algorithm we wish, and guess what? This is what we are 
going to do in the following section!

Introducing the Support Vector Machines algorithm

It’s about time that we train the first classification model. One of the most well-known supervised 
learning algorithms is the Support Vector Machines (SVM) algorithm. We could dedicate a whole 
book to demystifying this family of methods, so we will visit a few key elements in this section. First, 
recall from Chapter 1, Introducing Machine Learning for Text, that any ML algorithm creates decision 
boundaries to classify new data correctly. As we cannot sketch high-dimensional spaces, we will consider 
a two-dimensional example. Hopefully, this provides some of the intuition behind the algorithm.

Figure 2.9 shows the data points for the spam and ham instances along with two features, namely 𝑥𝑥1  
and 𝑥𝑥2 :

Figure 2.9 – Classification of spam and ham emails using the SVM

The line in the middle separates the two classes and the dotted lines represent the borders of the margin. 
The SVM has a twofold aim to find the optimal separation line (a one-dimensional hyperplane) while 
maximizing the margin. Generally, for an n-dimensional space, the hyperplane has (n-1) dimensions. 
Let’s examine our space size in the code that follows:

print(train_data_features.shape)

>> (670, 28337)
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Each of the 670 emails in the training set is represented by a feature vector with a size of 28337 
(the number of unique words in the corpus). In this sparse vector, the non-zero values signify the 
tf-idf weights for the words. For the SVM, the feature vector is a point in a 28,337-dimensional space, 
and the problem is to find a 28,336-dimensional hyperplane to separate those points. One crucial 
consideration within the SVM is that not all the data points contribute equally to finding the optimal 
hyperplane, but mostly those close to the margin boundaries (depicted with a dotted circle in Figure 
2.9). These are called support vectors, and if they are removed, the position of the dividing hyperplane 
alters. For this reason, we consider them the critical part of the dataset.

The general equation of a line in two-dimensional space is expressed with the formula  
𝑦𝑦 = 𝑎𝑎 ∙ 𝑥𝑥 + 𝑏𝑏 . Three examples are shown in Figure 2.10:

Figure 2.10 – Examples of line equations

In the same sense, the middle line in Figure 2.9 and the two margin boundaries have the following 
equations, respectively:

𝑎𝑎 ∙ 𝑥𝑥1 − 𝑥𝑥2 + 𝑏𝑏 = 0 ,  𝑎𝑎 ∙ 𝑥𝑥1 − 𝑥𝑥2 + 𝑏𝑏 = 1   and  𝑎𝑎 ∙ 𝑥𝑥1 − 𝑥𝑥2 + 𝑏𝑏 = −1 

Defining the vectors 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2)  and 𝑤𝑤 = (𝑎𝑎,−1) , we can rewrite the previous equations using the 
dot product that we encountered in the Calculating vector similarity section:

𝑤𝑤 • 𝑥𝑥 + 𝑏𝑏 = 0 ,  𝑤𝑤 • 𝑥𝑥 + 𝑏𝑏 = 1 and  𝑤𝑤 • 𝑥𝑥 + 𝑏𝑏 = −1 

To find the best hyperplane, we need to estimate w and b, referred to as the weight and bias in ML 
terminology. Among the infinite number of lines that separate the two classes, we need to find the 
one that maximizes the margin, the distance between the closest data points of the two classes. In 
general, the distance between two parallel lines 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶1 = 0  and 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶2 = 0  is equal 
to the following:

|𝐶𝐶1 − 𝐶𝐶2|
√𝐴𝐴2 + 𝐵𝐵2
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So, the distance between the two margin boundaries is the following:

To maximize the previous equation, we need to minimize the denominator, namely the quantity ‖𝑤𝑤‖  
that represents the Euclidean norm of vector w. The technique for finding w and b is beyond the scope 
of this book, but we need to define and solve a function that penalizes any misclassified examples 
within the margin. After this point, we can classify a new example, 𝑥𝑥′ , based on the following model 
(the sign function takes any number as input and returns +1 if it is positive or -1 if it is negative):

The example we are considering in Figure 2.9 represents an ideal situation. The data points are arranged 
in the two-dimensional space in such a way that makes them linearly separable. However, this is 
often not the case, and the SVM incorporates kernel functions to cope with nonlinear classification. 
Describing the mechanics of these functions further is beyond the scope of the current book. Notice 
that different kernel functions are available, and as in all ML problems, we have to experiment to 
find the most efficient option in any case. But before using the algorithm, we have to consider two 
important issues to understand the SVM algorithm better.

Adjusting the hyperparameters

Suppose two decision boundaries (straight lines) can separate the data in Figure 2.11.

Figure 2.11 – Two possible decision boundaries for the data points using the SVM

Which one of those boundaries do you think works better? The answer, as in most similar questions, 
is that it depends! For example, the line in the left plot has a higher classification error, as one opaque 
dot resides on the wrong side. On the other hand, the margin in the right plot (distance between the 
dotted lines) is small, and therefore the model lacks generalization. In most cases, we can tolerate a 

|(𝑏𝑏 − 1) − (𝑏𝑏 + 1)|
√𝑎𝑎2 + (−1)2

= 2
‖𝑤𝑤‖ 

𝑓𝑓(𝑥𝑥′) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤 • 𝑥𝑥′ + 𝑏𝑏) = {
   +1, (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

−1, (ℎ𝑎𝑎𝑎𝑎)
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small number of misclassifications during SVM training in favor of a hyperplane with a significant 
margin. This technique is called soft margin classification and allows some samples to be on the 
wrong side of the margin.

The SVM algorithm permits the adjustment of the training accuracy versus generalization tradeoff 
using the hyperparameter C. A frequent point of confusion is that hyperparameters and model 
parameters are the same things, but this is not true. Hyperparameters are parameters whose values 
are used to control the learning process. On the other hand, model parameters update their value in 
every training iteration until we obtain a good classification model. We can direct the SVM to create 
the most efficient model for each problem by adjusting the hyperparameter C. The left plot of Figure 
2.11 is related to a lower C value compared to the one on the right.

Let’s look at another dataset for which two possible decision boundaries exist (Figure 2.12). Which 
one seems to work better this time?

Figure 2.12 – Generalization (left) versus overfitting (right)

At first glance, the curved line in the plot on the right perfectly separates the data into two classes. But 
there is a problem. Getting too specific boundaries entails the risk of overfitting, where your model 
learns the training data perfectly but fails to classify a slightly different example correctly.

Consider the following real-world analogy of overfitting. Most of us have grown in a certain cultural 
context, trained (overfitted) to interpret social signals such as body posture, facial expressions, or voice 
tone in a certain way. As a result, when socializing with people of diverse backgrounds, we might fail 
to interpret similar social signals correctly (generalization).

Besides the hyperparameter C that can prevent overfitting, we can combine it with gamma, which 
defines how far the influence of a single training example reaches. In this way, the curvature of the 
decision boundary can also be affected by points that are pretty far from it. Low gamma values signify 
far reach of the influence, while high values cause the opposite effect. For example, in Figure 2.12 
(right), the points inside a dotted circle have more weight, causing the line’s intense curvature around 
them. In this case, the hyperparameter gamma has a higher value than the left plot.
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The takeaway here is that both C and gamma hyperparameters help us create more efficient models 
but identifying their best values demands experimentation. Equipped with the basic theoretical 
foundation, we are ready to incorporate the algorithm!

Putting the SVM into action

In the following Python code, we use a specific implementation of the SVM algorithm, the C-Support 
Vector Classification. By default, it uses the Radial Basis Function (RBF) kernel:

from sklearn import svm

# Create the classifier.

svm_classifier = svm.SVC(kernel="rbf", C=1.0, gamma=1.0, 
probability=True)

# Fit the classifier with the train data.

svm_classifier.fit(train_data_features.toarray(), train_class)

# Get the classification score of the train data.

svm_classifier.score(train_data_features.toarray(), train_
class)

>> 0.9970149253731343

Now, use the test set:

# Get the classification score of the test data.

svm_classifier.score(test_data_features.toarray(), test_class)

>> 0.8755760368663594

Observe the classifier’s argument list, including the kernel and the two hyperparameters, gamma and 
C. Then, we evaluate its performance for both the training and test sets. We are primarily interested 
in the second result, as it quantifies the accuracy of our model on unseen data – essentially, how well 
it generalizes. On the other hand, the performance on the training set indicates how well our model 
has learned from the training data. In the first case, the accuracy is almost 100%, whereas, for unseen 
data, it is around 88%.

Equipped with the necessary understanding, you can rerun the preceding code and experiment with 
different values for the hyperparameters; typically, 0.1 < C < 100 and 0.0001 < gamma < 10. In the 
following section, we present another classification algorithm based on a fundamental theorem in ML.
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Understanding Bayes’ theorem

Imagine a pool of 100 shapes (including squares, triangles, circles, and rhombuses). These can have 
either an opaque or a transparent fill. If you pick a circle shape from the pool, what is the probability 
of it having a transparent fill? Looking at Figure 2.13, we are interested to know which shapes in set 
A (circles) are also members of set B (all transparent shapes):

Figure 2.13 – The intersection of the set with circles with the set of all transparent shapes

The intersection of the two sets is highlighted with the grid texture and mathematically written as 
A∩B or B∩A. Then, we construct Table 2.6, which helps us perform some interesting calculations:

Table 2.6 – The number of shapes by type and fill

First, notice that the total number of items in the table equals 100 (the number of shapes). We can 
then calculate the following quantities:

•	 The probability of getting a circle is 𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =
10 + 30
100 = 40% 

•	 The probability of getting a transparent fill is 𝑃𝑃(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = 30 + 40
100 = 70% 

•	 The probability of getting a transparent fill when the shape is a circle is 

𝑃𝑃(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 30
10 + 30 = 75% 

•	 The probability of getting a circle when the fill is transparent is 

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 30
30 + 40 = 43% 
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The symbol |  signifies conditional probability. Based on these numbers, we can identify a relationship 
between the probabilities:

𝑃𝑃(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑃𝑃(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

The previous equation suggests that if the probability P(transparent|circle) is unknown, we can use 
the others to calculate it. We can also generalize the equation as follows:

𝑃𝑃(𝐴𝐴|𝐵𝐵)𝑃𝑃(𝐵𝐵) = 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐵𝐵 ∩ 𝐴𝐴) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴) 

Exploring the different elements, we reach the famous formula known as Bayes’ theorem, which is 
fundamental in information theory and ML:

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)  

The exercise in Table 2.6 was just an example to introduce the fundamental reasoning behind the 
theorem; all quantities are available to calculate the corresponding probabilities. However, this is not 
the case in most practical problems, and this is where Bayes’ theorem comes in handy. For example, 
consider the following situation: you are concerned that you have a severe illness and decide to go to 
the hospital for a test. Sadly, the test is positive. According to your doctor, the test has 99% reliability; 
for 99 out of 100 sick people, the test is positive, and for 99 out of 100 healthy people, the test is 
negative. So, what is the probability of you having the disease? Most people logically answer 99%, but 
this is not true. The Bayesian reasoning tells us why.

We have a population of 10,000 people, and according to statistics, 1% (so, 100 people) of this population 
has the illness. Therefore, based on a 99% reliability, this is what we know:

•	 Of the 100 sick subjects, 99 times (99%), the test is positive, and 1 is negative (1% and 
therefore wrong).

•	 Of the 9,900 healthy subjects, 99 times (1%), the test is positive, and 9,801 is negative (99% 
and therefore correct).

As before, we construct Table 2.7, which helps us with the calculations:

Table 2.7 – The number of people by health condition and test outcome
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At first glance, the numbers suggest that there is a non-negligible likelihood that you are healthy and 
that the test is wrong (99/10000≈1%). Next, we are looking for the probability of being sick given a 
positive test. So, let’s see the following:

This percentage is much smaller than the 99% initially suggested by most people. What is the catch 
here? The probability P(sick) in the equation is not something we know exactly, as in the case of the 
shapes in the previous example. It’s merely our best estimate on the problem, which is called prior 
probability. The knowledge we have before delving into the problem is the hardest part of the equation 
to figure out.

Conversely, the probability P(sick|positive test) represents our knowledge after solving the problem, 
which is called posterior probability. If, for example, you retook the test and this showed to be positive, 
the previous posterior probability becomes your new prior one – the new posterior increases, which 
makes sense. Specifically, you did two tests, and both were positive.

Takeaway
Bayesian reasoning tells us how to update our prior beliefs in light of new evidence. As new 
evidence surfaces, your predictions become better and better.

Remember this discussion the next time you read an article on the internet about an illness! Of course, 
you always need to interpret the percentages in the proper context. But let’s return to the spam filtering 
problem and see how to apply the theorem in this case.

Introducing the Naïve Bayes algorithm

Naïve Bayes is a classification algorithm based on Bayes’ theorem. We already know that the features 
in the emails are the actual words, so we are interested in calculating each posterior probability 
P(spam|word) with the help of the following theorem:

where 𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = 𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤|ℎ𝑎𝑎𝑎𝑎)𝑃𝑃(ℎ𝑎𝑎𝑎𝑎) .

𝑃𝑃(𝑠𝑠𝑠𝑠𝑐𝑐𝑘𝑘|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) =

99
100 × 0.01

198
10000

= 0.5 = 50% 

𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = 𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)  
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Flipping a coin once gives a ½ probability of getting tails. The probability of getting tails two consecutive 
times is ¼, as P(tail first time)P(tail second time)=(½)(½)=¼. Thus, repeating the previous calculation 
for each word in the email (N words in total), we just need to multiply their individual probabilities:

As with the SVM, it is straightforward to incorporate Naïve Bayes using sklearn. In the following 
code, we use the algorithm’s MultinomialNB implementation to suit the discrete values (word 
counts) used as features better:

from sklearn import naive_bayes

# Create the classifier.

nb_classifier = naive_bayes.MultinomialNB(alpha=1.0)

# Fit the classifier with the train data.

nb_classifier.fit(train_data_features.toarray(), train_class)

# Get the classification score of the train data.

nb_classifier.score(train_data_features.toarray(), train_class)

>> 0.8641791044776119

Next, we incorporate the test set:

# Get the classification score of the test data.

nb_classifier.score(test_data_features.toarray(), test_class)

>> 0.8571428571428571

The outcome suggests that the performance of this classifier is inferior. Also, notice the result on the 
actual training set, which is low and very close to the performance on the test set. These numbers are 
another indication that the created model is not working very well.

∏𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖)
𝑁𝑁

𝑖𝑖=1
=∏𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
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Clarifying important key points

Before concluding this section, we must clarify some points concerning the Naïve Bayes algorithm. 
First of all, it assumes that a particular feature in the data is unrelated to the presence of any other 
feature. In our case, the assumption is that the words in an email are conditionally independent of 
each other, given that the type of the email is known (either spam or ham). For example, encountering 
the word deep does not suggest the presence or the absence of the word learning in the same email. 
Of course, we know that this is not the case, and many words tend to appear in groups (remember 
the discussion about n-grams). Most of the time, the assumption of independence of words is false 
and naive, and this is what the algorithm’s name stems from. In reality, of course, the assumption of 
independence allows us to solve many practical problems.

Another issue is when a word appears in the ham emails but is not present in the spam ones (say, covid). 
Then, according to the algorithm, its conditional probability is zero, P(“covid”|spam) = 0, which is 
rather inconvenient since we are going to multiply it with the other probabilities (making the outcome 
equal to zero). This situation is often known as the zero-frequency problem. The solution is to apply 
smoothing techniques such as Laplace smoothing, where the word count starts at 1 instead of 0.

Let’s see an example of this problem. In a corpus of 10,000 emails, 6,000 are ham and 4,000 are spam. 
The word heritage appears in 37 emails of the first category and 453 of the second one. Its conditional 
probabilities are the following:

Moreover:

For an email that contains both words (heritage and covid), we need to multiply their individual 
probabilities (the symbol “…” signifies the other factors in the multiplication):

𝑃𝑃("ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒"|ℎ𝑎𝑎𝑎𝑎) = 37
6000 ≈ 0.61%        𝑎𝑎𝑎𝑎𝑎𝑎         

𝑃𝑃("ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒"|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 453
4000 ≈ 11% 

𝑃𝑃("𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐"|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0
4000 = 0%         

… 𝑃𝑃("ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒"|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑃𝑃("𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐"|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) … = 0%         
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To overcome this problem, we apply Laplace smoothing, adding 1 in the numerator and 2 in the 
denominator. As a result, the smoothed probabilities now become the following:

Notice that Laplace smoothing is a hyperparameter that you can specify before running the classification 
algorithm. For example, in the Python code used in the previous section, we constructed the 
MultinomialNB classifier using the alpha=1.0 smoothing parameter in the argument list.

This section incorporated two well-known classification algorithms, the SVM and Naïve Bayes, and 
implemented two versions of a spam detector. We saw how to acquire and prepare the text data for 
training models, and we got a better insight into the trade-offs while adjusting the hyperparameters 
of the classifiers. Finally, this section provided some preliminary performance scores, but we still 
lack adequate knowledge to assess the two models. This discussion is the topic of the next section.

Measuring classification performance
The standard approach for any ML problem incorporates different classification algorithms and examines 
which works best. Previously, we used two classification methods for the spam filtering problem, but 
our job is not done yet; we need to evaluate their performance in more detail. Therefore, this section 
presents a deeper discussion on standard evaluation metrics for this task.

Calculating accuracy

If you had to choose only one of the two created models for a production system, which would that 
be? The spontaneous answer is to select the one with the highest accuracy. The argument is that the 
algorithm with the highest number of correct classifications should be the right choice. Although this 
is not far from the truth, it is not always the case. Accuracy is the percentage of correctly classified 
examples by an algorithm divided by the total number of examples:

Suppose that a dataset consists of 1,000 labeled emails. Table 2.8 shows a possible outcome after 
classifying the samples:

𝑃𝑃("ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒"|ℎ𝑎𝑎𝑎𝑎) = 38
6002 ≈ 0.63%, 

𝑃𝑃("ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒"|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 454
4002 ≈ 11%            𝑎𝑎𝑎𝑎𝑎𝑎 

𝑃𝑃("𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐"|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 1
4002 ≈ 0.02%   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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Table 2.8 – A confusion matrix after classifying 1,000 emails

Each cell contains information about the following:

•	 The correct label of the sample (Reality)

•	 The classification result (Prediction)

•	 Total number of samples

For example, 85 emails are labeled as ham, but they are, in reality, spam (in the bottom-left cell). This 
table, known as a confusion matrix, is used to evaluate the performance of a classification model 
and provide a better insight into the types of error. Ideally, we would prefer all model predictions to 
appear in the main diagonal (True Positive and True Negative). From the matrix, we can immediately 
observe that the dataset is imbalanced, as it contains 100 spam emails and 900 ham ones.

We can rewrite the formula for accuracy based on the previous information as follows:

89.5% of accuracy doesn’t seem that bad, but a closer look at the data reveals a different picture. Out 
of the 100 spam emails (TPs + FNs), only 15 are identified correctly, and the other 85 are labeled as 
ham emails. Alas, this score is a terrible result indeed! To assess the performance of a model correctly, 
we need to make this analysis and consider the type of errors that are most important within the task. 
Is it better to have a strict model that can block a legitimate email for the sake of fewer spam ones 
(increased FPs)? Or is it preferable to have a lenient model that doesn’t block most ham emails but 
allows more undetected spam in your mailbox (increased FNs)?

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 = 15 + 880

15 + 880 + 20 + 85 = 0.895 
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Similar questions arise in all ML problems and generally in many real-world situations. For example, 
wrong affirmative decisions (FPs) in a fire alarm system are preferable to wrong negative ones (FNs). 
In the first case, we get a false alert of a fire that didn’t occur. Conversely, declaring innocent a guilty 
prisoner implies higher FNs, which is preferable to finding guilty an innocent one (higher FPs). 
Accuracy is a good metric when the test data is balanced and the classes are equally important.

In the following Python code, we calculate the accuracy for a given test set:

from sklearn import metrics

# Get the predicted classes.

test_class_pred = nb_classifier_naive.predict(test_data_
features.toarray())

# Calculate the accuracy on the test set.

metrics.accuracy_score(test_class, test_class_pred)

>> 0.8571428571428571

Accuracy is a prominent and easy-to-interpret metric for any ML problem. As already discussed, 
however, it poses certain limitations. The following section focuses on metrics that shed more light 
on the error types.

Calculating precision and recall

Aligned with the previous discussion, we can introduce two evaluation metrics: precision and recall. 
First, precision tells us the proportion of positive identifications that are, in reality, correct, and it’s 
defined as the following (with the numbers as taken from Table 2.8):

In this case, only 43% of all emails identified as spam are actually spam. The same percentage in a 
medical screening test suggests that 43% of patients classified as having the disease genuinely have it. 
A model with zero FPs has a precision equal to 1.

Recall, on the other hand, tells us the proportion of the actual positives that are identified correctly, 
and it’s defined as the following:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 = 15

15 + 20 = 0.43 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 = 15

15 + 85 = 0.15 
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Here, the model identifies only 15% of all spam emails. Ditto, 15% of the patients with a disease are 
classified as having the disease, while 85 sick people remain undiagnosed. A model with zero FNs 
has a recall equal to 1. Improving precision often deteriorates recall and vice versa (remember the 
discussion on strict and lenient models in the previous section).

We can calculate both metrics in the following code using the Naïve Bayes model:

# Calculate the precision on the test set.

metrics.precision_score(test_class, test_class_pred)

>> 0.8564814814814815

After calculating precision, we do the same for recall:

# Calculate the recall on the test set.

metrics.recall_score(test_class, test_class_pred)

>> 1.0

Notice that in this case, recall is equal to 1.0, suggesting the model captured all spam emails. Equipped 
with the necessary understanding of these metrics, we can continue on the same path and introduce 
another typical score.

Calculating the F-score

We can combine precision and recall in one more reliable F-score metric: their harmonic mean, given 
by the following equation:

When precision and recall reach their perfect score (equal to 1), the F-score becomes 1. In the following 
code, we calculate the F-score comparing the actual class labels in the test set and the ones predicted 
by the model:

# Calculate the F-score on the test set.

metrics.f1_score(test_class, test_class_pred)

>> 0.9226932668329177

As we can observe, the Naïve Bayes model has an F-score equal to 0.92. Running the same code for 
the SVM case gives an F-score of 0.93.

The following section discusses another typical evaluation metric.

F--score = 2 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 2 ∙ 0.43 ∙ 0.15

0.43 + 0.15 = 0.22 
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Creating ROC and AUC

When the classifier returns some kind of confidence score for each prediction, we can use another 
technique for evaluating performance called the Receiver Operator Characteristic (ROC) curve. 
A ROC curve is a graphical plot that shows the model’s performance at all classification thresholds. 
It utilizes two rates, namely the True Positive Rate (TPR), the same as recall, and the False Positive 
Rate (FPR), defined as the following:

The benefit of ROC curves is that they help us visually identify the trade-offs between the TPR and 
FPR. In this way, we can find which classification threshold better suits the problem under study. For 
example, we need to ensure that no important email is lost during spam detection (and consequently, 
label more spam emails as ham). But, conversely, we must ascertain that all ill patients are diagnosed 
(and consequently, label more healthy individuals as sick). These two cases require a different trade-
off between the TPR and FPR.

Let’s see how to create a ROC curve plot in Table 2.9 using a simplified example with 10 emails and 
7 thresholds:

Table 2.9 – Calculating the TPR and FPR scores for different thresholds

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹     𝑎𝑎𝑎𝑎𝑎𝑎    𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 
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For each sample in the first column of the table, we get a prediction score (probability) in the second 
one. Then, we compare this score with the thresholds. If the score exceeds the threshold, the example 
is labeled as ham. Observe the first sample in the table, which is, in reality, ham (represented by a 
black dot). The model outputs a prediction probability equal to 0.1, which labels the sample as ham 
for all thresholds except the first one. Repeating the same procedure for all samples, we can extract 
the confusion matrix in each case and calculate the TPR and FPR. Notice that for a threshold equal 
to 0, the two metrics are equal to 1. Conversely, if the threshold is 1, the metrics are equal to 0.

Figure 2.14 shows the different possible results of this process. The grayed area in these plots, called 
the Area Under the ROC Curve (AUC), is related to the quality of our model; the higher its surface, 
the better it is:

Figure 2.14 – Different ROC curves and their corresponding AUCs

Interesting Fact
Radar engineers first developed the ROC curve during World War II for detecting enemy 
objects on battlefields.

A in Figure 2.14 represents the ideal situation, as there are no classification errors. B in Figure 2.14 
represents a random classifier, so if you end up with a similar plot, you can flip a coin and decide on 
the outcome, as your ML model won’t provide any additional value. However, most of the time, we 
obtain plots similar to C in Figure 2.14. To summarize, the benefit of ROC curves is twofold:

•	 We can directly compare different models to find the one with a higher AUC.

•	 We can specify which TPR and FPR combination offers good classification performance for 
a specific model.
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We can now apply the knowledge about the ROC and AUC to the spam detection problem. In the 
following code, we perform the necessary steps to create the ROC curves for the two models:

# Create and plot the ROC curves.

nb_disp = metrics.plot_roc_curve(nb_classifier, test_data_
features.toarray(), test_class)

svm_disp = metrics.plot_roc_curve(svm_classifier, test_data_
features.toarray(), test_class, ax=nb_disp.ax_)

svm_disp.figure_.suptitle("ROC curve comparison")

Figure 2.15 shows the output of this process:

Figure 2.15 – The AUC for the SVM and the Naïve Bayes model

According to the figure, the AUC is 0.98 for the SVM and 0.87 for Naïve Bayes. All results so far 
corroborate our initial assumption of the superiority of the SVM model. Finally, the best trade-off 
between the TPR and FPR lies in the points inside the dotted circle. For these points, the TPR is close 
to 1.0 and the FPR close to 0.0.

Creating precision-recall curves

Before concluding the chapter, let’s cover one final topic. ROC curves can sometimes perform too 
optimistically with imbalanced datasets. For example, using the TN factor during the FPR calculation 
can skew the results; look at the disproportional value of TN in Table 2.8. Fortunately, this factor is not 
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part of the precision or recall formulas. The solution, in this case, is to generate another visualization 
called the Precision-Recall curve. Let’s see how to create the curves for the Naïve Bayes predictions:

1.	 Initially, we extract the ROC:

# Obtain the scores for each prediction.

probs = nb_classifier.predict_proba(test_data_features.
toarray())

test_score = probs[:, 1]

# Compute the Receiver Operating Characteristic.

fpr, tpr, thresholds = metrics.roc_curve(test_class, 
test_score)

# Compute Area Under the Curve.

roc_auc = metrics.auc(fpr, tpr)

# Create the ROC curve.

rc_display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, 
roc_auc=roc_auc, estimator_name='MultinomialNB')

2.	 Let’s use the same predictions to create the precision-recall curves:

# Create the precision recall curves.

precision, recall, thresholds = metrics.precision_recall_
curve(test_class, test_score)

ap = metrics.average_precision_score(test_class, test_
score)

pr_display = metrics.
PrecisionRecallDisplay(precision=precision, 
recall=recall, average_precision=ap, estimator_
name='MultinomialNB')

3.	 We can combine and show both plots in one:

# Plot the curves.

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))

rc_display.plot(ax=ax1)

pr_display.plot(ax=ax2)
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The output in Figure 2.16 presents the ROC and precision-recall curves side by side:

Figure 2.16 – The ROC curve (left) versus the precision-recall curve (right) for the Naïve Bayes model

Both plots summarize the trade-offs between the rates on the x and y axes using different probability 
thresholds. In the right plot, the average precision (AP) is 0.97 for the Naïve Bayes model and 0.99 
for the SVM (not shown). Therefore, we do not observe any mismatch between the ROC and the 
precision-recall curves concerning which model is better. The SVM is the definite winner! One possible 
scenario when using imbalance sets is that the TN factor can affect the choice of the best model. In 
this case, we must scrutinize both types of curves to understand the models’ performance and the 
differences between the classifiers. The takeaway is that a metric’s effectiveness depends on the specific 
application and should always be examined from this perspective.

Summary
This chapter introduced many fundamental concepts, methods, and techniques for ML in the realm 
of text data. Then, we had the opportunity to apply this knowledge to solve a spam detection problem 
by incorporating two supervised ML algorithms. The content unfolded as a pipeline of different tasks, 
including text preprocessing, text representation, and classification. Comparing the performance of 
different models constitutes an integral part of this pipeline, and in the last part of the chapter, we 
dealt with explaining the relevant metrics. Hopefully, you should be able to apply the same process 
to any similar problem in the future.

Concluding the chapter, we need to make it clear that spam detection in modern deployments is 
not just a static binary classifier but resembles an adversarial situation. One party constantly tries to 
modify the messages to avoid detection, while the other party constantly tries to adapt its detection 
mechanisms to the new threat.

The next chapter expands on the ideas introduced in this chapter but focuses on more advanced 
techniques to perform topic classification.



3
Classifying Topics of 

Newsgroup Posts

The large volumes of unstructured text that large corporations and organizations need to sort daily 
necessitate automatizing tedious and time-consuming manual tasks. The good news is that machine 
learning (ML) is also of assistance when analyzing this type of data. This chapter will educate us on 
how to tag a text document using a list of predefined topics. The aim is to assign each sample to one 
and only one label, which becomes more challenging as the number of topics increases.

We will attack the problem by utilizing supervised and unsupervised ML techniques. First, we expand 
on the basic exploratory data analysis presented in the previous chapter and create richer visualizations 
with extra meaning and depth. The transformation of data from a high-dimensional space into a 
low-dimensional one assists in this task, so we will discuss pertinent techniques throughout the 
chapter. Then, we will implement two classifiers using one of Python’s built-in datasets and compare 
the different models. Finally, we will introduce state-of-the-art word representation techniques 
comprising unique properties.

Notice that the content of the first two chapters complemented each other. So, the presented methods 
and techniques can be applied across the problems presented in both chapters. By the end of this one, 
you will enhance your arsenal with additional theoretical knowledge and the skills to implement topic 
classifiers in Python. 

We will cover the following topics:

•	 Creating comprehensive plots

•	 Reducing the complexity of data either for visualization or classification

•	 Setting up a baseline model

•	 Training the classification models

•	 Fine-tuning the hyperparameters

•	 Understanding state-of-the-art word representation techniques
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Technical requirements
The code is available as a Jupyter notebook in the book’s GitHub repository: https://github.
com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/
chapter-03.

The notebook has an in-built step to download the necessary Python modules required for the practical 
exercises in this chapter. Additionally, you need a Google account to download the GoogleNews-
vectors-negative300.bin.gz pre-trained vectors from the following link: https://
code.google.com/archive/p/word2vec/.

Understanding topic classification
In Chapter 2, Detecting Spam Emails, we learned how to classify incoming emails as either spam or 
ham. Undoubtedly, quarantining unwanted correspondence in the spam folder is an excellent feature 
for any email application. But is that enough? Still, ending up with a large number of emails stacked 
in your inbox can be an equally unpleasant situation. For this reason, creating personalized folders to 
accommodate each item and facilitate either responding to or archiving email threads is common. This 
necessity is even more acute for companies or large organizations that offer a generic contact account 
for external people. Hence, the appropriate personnel or department must process a large volume of 
incoming questions, announcements, offers, and complaints. This task can be cumbersome for a single 
person, while an automated system can check every email and decide who its recipient should be. 

Besides emails, businesses deal with many other unstructured texts, such as news posts, support 
tickets, or customer reviews. Failing to glean this data efficiently can lead to missed opportunities 
or, even worse, angry customers. The time factor is also crucial, as the company can have a real-time 
view of the different issues and react accordingly. Moreover, manual classification engenders the risk 
of labeling each document using slightly different criteria. Applying consistent system guidelines 
means that all text data is processed similarly. So again, an automated system that can process a vast 
amount of data is a more scalable solution than manual scanning.

In the spam detection problem, we had to assign precisely one of two labels to the samples, a task 
known as binary classification. The two labels implicitly specified a desirable (non-spam) and an 
unwanted (spam) state, a common assumption for the binary classifiers. Contrary to this approach, 
other applications need to perform fine-grained categorization using more than two classes. In the 
case of multiclass classification, there is no notion of positive versus negative states, and the task is 
to predict the correct label among a range of available classes. Note that the methods presented in the 
previous chapter and those discussed in the current one can be applied to both binary and multiclass 
classification problems.

 https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-03
 https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-03
 https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-03
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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In this chapter, we focus on the problem of topic classification, intending to assign a label (or topic) to 
a piece of text. For this task, we use the 20 newsgroups dataset available in the scikit-learn 
module, which comprises around 18,000 news posts on 20 topics. As the list of topics is predefined, 
we are still in the realm of supervised learning. In Chapter 10, Clustering Speech-to-Text Transcriptions, 
we deal with situations where the topics are unknown. The analysis can have a different level of 
granularity and take place at the document, sentence, or sub-sentence level. In our case, however, 
we use the whole text inside the post to create the training and test instances. Let’s first start with the 
Exploratory Data Analysis (EDA).

Performing exploratory data analysis
During the EDA phase in Chapter 2, Detecting Spam Emails, we saw how word clouds could provide 
some basic intuition on text data by identifying the most frequent words in a document. Another 
primary concern during EDA is to verify that the dataset is appropriately formatted before resorting 
to the subsequent analysis. For instance, it is not uncommon to encounter missing or out-of-the-
range values. Plotting the data or extracting various statistics can reveal this unpleasant situation. 
Other times, we need to transform or exclude part of the data. Having an imbalanced dataset where 
one class monopolizes the whole corpus is also a source of concern. In this case, the ML algorithm is 
overexposed and subsequently learns data of one class type well while having difficulty with samples 
from the less frequent classes. All the previous issues must be addressed early to avoid any nasty 
surprises when treating the data later in the pipeline. 

In the following code, we load and extract some basic statistics from the fetch_20newsgroups 
corpus, starting with the total number of samples: 

from sklearn.datasets import fetch_20newsgroups

# Load the news data and print the names of the categories.

news = fetch_20newsgroups(subset='all')

# Print various information about the data.

print("Number of articles: " + str(len(news.data)))

>> Number of articles: 18846

Let’s get the number of the different news post categories:

print("Number of different categories: " + str(len(news.target_
names)))

>> Number of different categories: 20
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Now, we obtain the topic names of all categories:

print(news.target_names)

>> ['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.
windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 
'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.
electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 
'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.
misc', 'talk.religion.misc']

The output suggests that the posts deal with diverse topics, including technology, politics, religion, and 
sports. Next, we print the content of one sample:

print("\n".join(news.data[6].split("\n")[:]))

>> From: lpa8921@tamuts.tamu.edu (Louis Paul Adams)

Subject: Re: Number for Applied Engineering

Organization: Texas A&M University, College Station

Lines: 9

NNTP-Posting-Host: tamuts.tamu.edu

>Anyone have a phone number for Applied Engineering so I can 
give them

>a call?

AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech 
support may be on

their own line, but one of these should get you started.

Good luck!

Notice that each sample contains metadata besides the actual post message (such as From and 
Subject). Later in the chapter, we will discuss whether to consider this metadata in the analysis. 
But for the time being, let’s continue the EDA.
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Visualization methods offer a competitive advantage over other techniques by enhancing the richness 
of data with additional meaning and depth. This is why they are extensively used when exploring the 
input or reporting results. We discuss different plot types throughout the book and implement them 
in Python. Thus, in the following code snippet, we create and show a pie chart; each slice represents 
the percentage of one of the news categories in the corpus: 

import matplotlib.pyplot as plt

# Keep track of the number of samples per category.

samples_per_category = {}

# Iterate over all data.

for i in range(len(news.data)):

    # Get the category for the specific sample.

    category = news.target_names[news.target[i]]

    # Increase the category index by one.

    if category in samples_per_category:

        samples_per_category[category] += 1

    else:

        samples_per_category[category] = 1

# Create and show the distribution pie chart.

slices = []

# Obtain the slices of the pie.

for key in samples_per_category:

    slices.append(samples_per_category[key])

fig, ax = plt.subplots(figsize=(10, 10))

ax.pie(slices, labels=news.target_names, autopct='%1.1f%%', 
startangle=90)
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Figure 3.1 shows the pie chart:

Figure 3.1 – A pie chart of the distribution of all categories

Looking at Figure 3.1, we immediately observe a balance between the number of samples per category 
(around 5% each). This observation is essential, as we want to avoid categories that might dominate the 
dataset and skew our analysis. If this were the case, we could use a subset of samples in the dominant 
category to balance it against the rest.

Another helpful visualization is the frequency of the n-grams, which directly indicates the most 
common word combinations in any news category. In the following code, we decide to extract the 30 
most frequent bi-grams for the misc.forsale topic:

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

# Samples for the 'misc.forsale' category.

news_misc_forsale = []

# Iterate over all data.

for i in range(len(news.data)):
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    # Get the samples.

    if news.target_names[news.target[i]] == 'misc.forsale':

        news_misc_forsale.append(news.data[i])

# Create the count vectorizer using bi-grams.

vectorizer = CountVectorizer(ngram_range=(2, 2))

# Fit and transform

x = vectorizer.fit_transform(news_misc_forsale)

Next, we get the 30 most frequent bigrams:

sum_words = x.sum(axis=0)

words_freq = [(word, sum_words[0, idx]) for word, idx in 
vectorizer.vocabulary_.items()]

words_freq = sorted(words_freq, key=lambda x:x[1], 
reverse=True)

words = words_freq[:30]

We can now visualize their frequency with a bar plot:

# Create and show the bar chart.

df = pd.DataFrame(words, columns=['Bigram', 'Frequency'])

df = df.set_index('Bigram')

df.plot(figsize=(10, 5), kind='bar', title='Bigram frequency 
chart')

Figure 3.2 shows the output plot:
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Figure 3.2 – A bar chart of the 30 most frequent bi-grams in the misc.forsale category

In Figure 3.2, we can observe several bi-grams relevant to the topic, such as for sale, best offer, and to 
sale, while others can appear just as much in all categories. One possible utility of the plot is identifying 
and removing less relevant or meaningless frequent bi-grams. Although this is not the case in our 
example, it is not uncommon to encounter this situation when dealing with human texts.

In this section, we performed an initial investigation of the 20 newsgroups dataset with the 
help of summary statistics and graphical representations. This process is the first typical phase of 
resolving any ML problem, and it is essential for identifying directions for analysis, detecting patterns 
or anomalies, and avoiding possible pitfalls. In the subsequent chapters, we see that avoiding proper 
EDA can lead to erroneous analyses. 

The discussion in the following section involves another typical step in the pipeline for reducing the 
dimensions of a ML problem for visualization or classification purposes. For this reason, we present 
two quantitative techniques and apply them to the 20 newsgroups corpus.
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Executing dimensionality reduction
In the Explaining feature engineering section of Chapter 2, Detecting Spam Emails, we defined a feature of 
a ML problem as an attribute or a characteristic that describes it. Accumulating many features together 
creates a vector of attributes and each sample in a dataset is a unique combination of vector values. 
Consequently, adding more features to a specific problem implies increasing the vector’s dimensions. 
It is logical to think that having more features will provide a better description of the underlying data 
and alleviate the work of any ML algorithm that follows. But unfortunately, there are other implications.

In our discussion about Support Vector Machines (SVM) in Chapter 2, Detecting Spam Emails, we saw 
that each sample is a point in a high-dimensional space. More similar samples are closer than others and 
using the cosine similarity or Euclidean distance metrics, we can obtain their proximity. If we expand 
the dimensions of the feature space, we should also increase the number of data points in the set. The 
reason is that each point obtains a more unique combination of features after the expansion, and the 
feature space as a whole becomes sparse (emptier). As a result, the distance between the points grows, 
and supervised learning algorithms have difficulty making predictions for new data samples. There are 
not enough observations for all combinations of the features and there is a risk of overfitting to noise. 
Consequently, the model does not work well for unseen data and lacks generalization performance. 
We need more data samples to compensate for this problem – as a rule of thumb, at least five training 
examples for each dimension. This phenomenon in high-dimensional spaces is known as the curse 
of dimensionality (https://en.wikipedia.org/wiki/Curse_of_dimensionality) 
and appears in different domains besides ML. 

But is the constant addition of more features a good idea in the first place? The curse of dimensionality 
is used interchangeably with the peaking phenomenon. This principle states that the performance of 
a model steadily increases as more features (or dimensions) are added and starts to deteriorate after 
a certain threshold is reached (see Figure 3.3): 

Figure 3.3 – The peaking phenomenon

https://en.wikipedia.org/wiki/Curse_of_dimensionality)
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Let’s expand this discussion further. In the Explaining feature engineering section of Chapter 2, Detecting 
Spam Emails, we argued that selecting the appropriate features for a given problem is not easy. One 
reason is that we can end up with redundant or highly correlated features that unnecessarily tangle the 
ML algorithm. For example, consider the task of classifying planets based on two attributes, radius (r) 
and circumference (2πr). Jupiter and Saturn are classified as big planets, whereas Mars and Mercury 
are labeled small. So, what is the caveat here? Essentially, we are using two highly correlated quantities, 
and there is no extra benefit to including both in the feature space. The solution is to either keep one 
of them or introduce a new feature that is a linear combination of radius and circumference. This 
process is called dimensionality reduction and proves to be very helpful for speeding up the training 
of ML algorithms, filtering noise out of the data, performing feature extraction, and data visualization. 
Furthermore, working with fewer dimensions often makes the analysis more efficient and can help 
ML algorithms offer more accurate predictions. 

As part of the EDA, it can be helpful to visualize high-dimensional spaces in a way that our limited 
human brains can comprehend. This way, we can identify patterns in the data and possible directions 
for analysis. In this section, we will apply dimensionality reduction to visualize the samples in the 
20 newsgroups dataset. For this reason, you can consider it part of the exploratory data analysis 
discussed earlier. Later in this chapter and in Chapter 5, Recommending Music Titles, we will use it 
for feature extraction during the classification phase. In the next section, we examine two typical 
algorithms for dimensionality reduction.

Understanding principal component analysis

Principal component analysis (PCA) deals with unlabeled data, and for this reason, it is an unsupervised 
learning method. Contrary to supervised learning methods, PCA tries to identify relationships between 
the data samples without knowing the class each belongs to. The method creates a new coordinate 
system with a new set of orthogonal axes (principal components); the first axis goes toward the highest 
variance in the data, while the second one goes toward the second-highest variance. The number of 
principal components is a hyperparameter for the algorithm and we can calculate more components if 
needed. We will experiment with different values for the principal components throughout the chapter. 

PCA aims to retain the maximum amount of variation (information) about how the original data is 
distributed, but bear in mind that a certain level of information is lost during the process. Intuitively, 
the method performs lossy compression on the data, just as an image is compressed using photo editing 
software to reduce its size in bytes. As a result, part of the image quality is forever lost. Conversely, 
zipping a file is lossless compression, as we can recover the original data without wasting any information.
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Note
Variance is a statistical measure of dispersion that shows how far data points are spread out 
from their mean value. The variance is high when the data points are far from each other and 
very spread from the mean. Conversely, the variance is small when the points gravitate toward 
the mean.

We will examine the basic steps of this method using an example. Figure 3.4 shows a plot of 20 random 
points in a three-dimensional space (the table includes the xyz coordinates of each point):

Figure 3.4 – A plot of 20 random points in a three-dimensional space

Rotating the axes at various angles provides different views of the data points and possibly helps us 
understand how they relate. For example, two snapshots of this rotation along the xy and xz planes 
are presented in Figure 3.5:
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Figure 3.5 – The principal components on the xy and xz planes

The points in both plots are now projected in a two-dimensional space, which helps us identify where 
the variance occurs. Specifically, the first principal component axis, called PC1, is in the direction 
where the most variance takes place. Perpendicular to PC1 is the second principal component axis 
called PC2. The length of the vector is a measure of the variance of the data when projected onto that 
axis. Theoretically, we can even transform each of the two-dimensional into a one-dimensional line 
with 20 points using just one principal component axis. 

Let’s programmatically calculate the first three principal components of the points in Figure 3.4. In 
the code that follows, we create the array with the points and standardize their values:

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

# Our random data points.

points = np.array([[0.1,0.1,0.1], [0.2,0,0.2], [0.3,-
0.1,0.3], [0.4,-0.1,0.4], [-0.1,0.1,-0.1], [-0.2,0,-0.2], 
[-0.3,0.1,-0.3], [-0.4,0,-0.4], [-0.5,0.1,-0.5], [0.2,0,0.1], 
[0.3,0.1,0.2], [0.4,-0.1,0.5], [0.5,0.1,0.4], [0.5,0,0.6], 
[0.3,-0.1,0.4], [-0.2,-0.1,-0.1], [-0.4,0.1,-0.3], [-0.2,0.1,-
0.3], [-0.6,-0.1,-0.5], [-0.5,0,-0.4]])   
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# Standardize the points.

spoints = StandardScaler().fit_transform(points)

The standardization step is necessary; otherwise, PCA becomes biased towards features with high 
variance, leading to false results.

Normalization versus standardization
There is a common misconception about normalization and standardization. Both are data 
rescaling techniques to transform the values of the features into the same scale. For instance, 
if a feature set has data expressed in units of kilograms, dollars, or light-years, ML algorithms 
cannot use them, or they are less effective. Normalization is preferable when the data does not 
follow a Gaussian distribution and standardization is preferable in the opposite case.

Normalization is the process of rescaling real-valued numbers to the range of 0 and 1. If 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 
and 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚  are the minimum and maximum values of a feature, then the normalized value of 
X is given by the following:

Standardization is the process where the values are centered around the mean (μ) with a unit 
standard deviation (σ), given by the following:

Next, we calculate the components:

# Calculate 3 principal components.

pca = PCA(n_components=3)

pcaComponents = pca.fit_transform(spoints)

# Generate the scatter plot.

x1 = [1]*20

x2 = [2]*20

x3 = [3]*20

Notice the usage of the n_components=3 argument, as it permits defining the number of components 
for the PCA. Let’s now visualize them:

# Plot the figure.

pcaFigure = plt.figure(figsize=(8, 8))

pcaAxes = pcaFigure.add_subplot(1, 1, 1) 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎  
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pcaAxes.scatter(x1, pcaComponents[:,0], s=50, c='r', 
marker="s", label='PC1')

pcaAxes.scatter(x2, pcaComponents[:,1], s=50, c='g', 
marker="p", label='PC2')

pcaAxes.scatter(x3, pcaComponents[:,2], s=50, c='b', 
marker="x", label='PC3')

plt.legend(loc='upper right'

The output is shown in Figure 3.6:

Figure 3.6 – The generated three principal components plot

This figure suggests that PC1 captures the most variation, followed by PC2 and PC3. But how can we 
quantify that the principle components have considered enough of the variance? How many components 
should be chosen in a particular problem? The answer is shown in the following code fragment:

# Show the variance ratio per principal component.

pca.explained_variance_ratio_

>> array([0.69943775, 0.29606821, 0.00449403])
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We observe that the first component contains 69.9% of the variance, the second 29.6%, and the third 
0.004%. A rule of thumb is that the first and second principal components should capture at least 
85% of the variance for us to expect some useful insight into the data. Using these two components, we 
expect to recover most of the essential characteristics of the initial dataset. Fortunately, this threshold 
is reached in the previous example.

We are now ready to draw the plot of the data points in Figure 3.4 on the new coordinate system using 
the following code: 

# Create a data frame out of the principal components.

pcaFrame = pd.DataFrame(data = pcaComponents, columns = 
['principal component 1', 'principal component 2', 'principal 
component 3'])

        

# Generate the scatter plot.

pcaFigure = plt.figure(figsize=(15, 8))

pcaAxes = pcaFigure.add_subplot(1, 1, 1) 

pcaAxes.set_xlabel('First principal component', fontsize=15)

pcaAxes.set_ylabel('Second principal component', fontsize=15)

pcaAxes.scatter(pcaFrame.loc[:, 'principal component 1'],

                pcaFrame.loc[:, 'principal component 2'],

                c='black', s=50)

Next, we add the index of each point to the plot and draw it:

index = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

         11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

               

for i, txt in enumerate(index):

    pcaAxes.annotate(txt, (pcaFrame.loc[i, 'principal component 
1'], pcaFrame.loc[i, 'principal component 2']), fontsize=15)

pcaAxes.grid()

pcaFigure.show()

Figure 3.7 illustrates the output:
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Figure 3.7 – A plot of the data points clusters in the new space

Each axis in Figure 3.7 corresponds to one of the principal components. Moreover, a label with a 
number from 1 to 20 depicts a sample from Figure 3.4. The points now occupy a new position, with 
similar ones being closer than others. For example, look at the cluster with samples 3, 4, 12, and 15. 
Another interesting observation comes from the three trend lines. The samples that follow each line 
have the same y coordinate in Figure 3.4, such as points 2, 6, 8, 10, 14, and 20. Thus, a representation 
with a lower resolution (two dimensions) seems to include enough information from the initial dataset. 

Now, it is logical to think that if a few principal components capture enough data variation, they can 
also be used as features for a given problem. For example, instead of using the xyz coordinates to classify 
the points, we can incorporate their PC1 and PC2 values. This assumption is precisely the idea behind 
feature extraction under dimensionality reduction: the new feature values (or components) express the 
data samples as a weighted sum of the original variables. Consider this example: an apartment’s price 
can be reasonably predicted from its size in square meters, the number of rooms, its distance from 
public transportation, and the availability of shops nearby. PCA can weigh these features and reduce 
them to only two: size for the surface area and the number of rooms, and location for the proximity 
to essential facilities. In practice, PCA reduces the initial number of features in ML problems and 
can lead to simpler and more accurate classification models. While three principal components are 
needed for creating the three-dimensional plots of the data, a more significant number of components 
is typically required for feature extraction. 

Hopefully, this basic analysis has provided you with a better understanding of the utility of PCA and 
how it can be incorporated to visualize higher-order spaces or to perform feature extraction. Keep 
in mind this discussion as we revisit the subject of visualizing multidimensional spaces in Chapter 5, 
Recommending Music Titles. Let’s now discuss another typical method for dimensionality reduction. 
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Understanding linear discriminant analysis

Linear discriminant analysis (LDA) is the second dimensionality reduction technique discussed in 
this chapter. While PCA aims to identify the combination of principal components that maximize the 
variance in a dataset, LDA maximizes the separability between different classes by projecting the points 
onto a lower-dimensional space. It aims to find the linear projection of the data in this subspace that 
optimizes some measure of class separation. In contrast to the PCA algorithm, LDA is a supervised 
method. The plots in Figure 3.8 can help us decipher their differences schematically:

Figure 3.8 – The schematic difference between LDA and PCA 

The plot on the left includes samples that belong to one of two classes. For example, suppose we want 
to reduce the number of dimensions in this plot from two to one. To accomplish this transformation, 
we project all points to LD1 or LD2. Based on Figure 3.8, the first option is preferable because it 
separates the two classes perfectly. In reality, LDA considers all possible projections, not only those 
across the two axes. For the PCA case on the right plot, the labels of each class are irrelevant, and only 
the principal components for the highest variance are considered (PC1 and PC2). The main difference 
between the two methods is that PCA can utilize unlabeled data, which is impossible for LDA. 

It’s about time to implement both methods to perform data visualization.
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Putting PCA and LDA into action

Let’s apply our knowledge about PCA and LDA to the 20 newsgroups dataset. In the following code, 
we extract a subset of the data for three specific news categories – comp.sys.ibm.pc.hardware, 
comp.sys.mac.hardware, and talk.politics.misc:

import matplotlib.pyplot as plt

import numpy as np

from sklearn import metrics

from sklearn.decomposition import PCA

from sklearn.feature_extraction.text import TfidfVectorizer

# Select one of the following three categories.

categories = ['comp.sys.ibm.pc.hardware', 'comp.sys.mac.
hardware', 'talk.politics.misc']

#categories = ['alt.atheism', 'comp.windows.x', 'talk.religion.
misc']

#categories = ['rec.sport.baseball', 'rec.sport.hockey', 'sci.
space']

#categories = ['rec.autos', 'rec.motorcycles', 'talk.politics.
guns']

# Load the news data only for the specific categories.

news = fetch_20newsgroups(categories=categories)

Notice the three other combinations of topics in the categories variable. We use them all to produce 
the plots that follow. Next, we limit the number of samples to 2000 and apply tf-idf vectorization:

# Keep a smaller portion of the data.

data_samples = news.data[:2000]

data_target = news.target[:2000]

# Create the tf-idf vectorizer.

vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_
features=100, stop_words='english')

# Generate the tf-idf matrix for the dataset.

tfidf = vectorizer.fit_transform(data_samples)
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Finally, we apply PCA using two principal components and show the visualization:

# Calculate 2 principal components.

pca = PCA(n_components=2)

pcaComponents = pca.fit_transform(tfidf.toarray())

# Create and show the plot.

plt.figure(figsize=(10, 10))

scatter = plt.scatter(pcaComponents[:,0], pcaComponents[:,1], 
c=data_target)

labels = np.unique(data_target)

handles = [plt.Line2D([],[], marker="o", ls="", color=scatter.
cmap(scatter.norm(i))) for i in labels]

plt.legend(handles, categories)

We execute the same code three more times while uncommenting one of the categories variables. 
In this way, we can contrast four different combinations of news categories in the dataset. In the end, 
the merged output is shown in Figure 3.9:

Figure 3.9 – Two-component PCA visualizations for different news categories
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The immediate observation in all four plots is that the points of two topics appear to cluster closer 
together. Consider, for example, rec.autos and rec.motorcycles against talk.politics.
guns in the bottom-right plot. As the first two refer to a similar topic, their samples overlap more 
than either one overlaps with the latter. Interestingly, we encounter a similar pattern for hardware 
versus politics (top left), religion versus computers (top right), and sports versus science (bottom 
left). This is an amazing result, as we applied PCA with only two principal components. Since these 
components did such good work for visualization, it is logical to use them as features. We explore 
this idea later in the chapter.

Let’s now incorporate LDA for the same task using two components again in the code that follows:

from sklearn.discriminant_analysis import 
LinearDiscriminantAnalysis

# Calculate 2 principal components.

lda = LinearDiscriminantAnalysis(n_components=2)

ldaComponents = lda.fit(tfidf.toarray(), data_target)

ldaComponents = lda.transform(tfidf.toarray())

# Create and show the plot.

plt.figure(figsize=(10, 10))

scatter = plt.scatter(ldaComponents[:,0], ldaComponents[:,1], 
c=data_target)

labels = np.unique(data_target)

handles = [plt.Line2D([], [], marker="o", ls="", color=scatter.
cmap(scatter.norm(i))) for i in labels]

plt.legend(handles, categories)

The output is presented in Figure 3.10: 
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Figure 3.10 – Two-component LDA visualizations for different news categories

This time, the separation of the topics is much better, and the overlap is minimal. For this example, 
LDA did a great job compared to PCA! 

Besides the visualization capabilities of LDA, we can extract other information from the dataset. For 
example, the code that follows shows how to obtain the top ten words in each topic: 

# Print the 10 top words per news category.

feature_names = np.asarray(vectorizer.get_feature_names())

for i, category in enumerate(categories):

    top = np.argsort(lda.coef_[i])[-10:]

    print("%s: %s" % (category, " ".join(feature_names[top])))
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>> comp.sys.ibm.pc.hardware: os program card help ide bus pc 
dos windows host

comp.sys.mac.hardware: monitor ram work speed got software 
thanks apple mac nntp

talk.politics.misc: said say did people cramer writes 
stephanopoulos government clinton nntp

Observe output words such as card, ide, and bus for comp.sys.ibm.pc.hardware, 
apple and mac for comp.sys.mac.hardware, and government and clinton for talk.
politics.misc. Each of these words fits well with the corresponding category; for example, we 
often encounter the words card, IDE, and bus in texts about hardware.

The discussion in this section focused on dimensionality reduction techniques and why they are 
important in ML problems. You can think of it as lossy data compression, reducing its size without 
losing much information. In this way, we can attack the curse of dimensionality while economizing 
in terms of computer memory. After finishing the exploratory analysis and getting more intuition 
about the dataset, we can move to the next analysis step and create models for classifying news posts 
using two fundamental ML algorithms.

Introducing the k-nearest neighbors algorithm
This section deals with a classification algorithm that is very easy to understand intuitively through 
an example. Consider the cloud in Figure 3.11 that contains three types of smiley faces – happy, sad, 
and neutral. There is also a hidden face depicted by a question mark. If you had to guess what its 
actual type was, what would that be?

Figure 3.11 – A cloud with happy, sad, and neutral smiley faces

Most probably, it’s a happy face. Right? The implicit assumption is that one needs to examine the 
neighborhood to identify the hidden type. As more happy faces are nearby, we can reasonably argue 
that the face shows a happy one. 
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This line of thought is precisely the intuition behind the k-nearest neighbors (KNN) algorithm. KNN 
is a non-parametric and lazy learning method that stores the position of all data samples and classifies 
new cases based on some similarity measure. Lazy learning means that the algorithm takes almost zero 
time to learn in this case. In the case, for KNN, the training samples are stored and used to classify 
new observations based on a majority vote. K is the only hyperparameter of KNN and specifies the 
number of closest neighbors to be considered. So, for example, when K = 1, the nearest neighbor class 
is assigned to the new sample; when K = 3, the three closest neighbors are examined, and so on. In 
practice, we tend to choose odd values for K to avoid a tie in the majority vote.

Note
ML models can be parametric or non-parametric. Parametric models know the number of 
parameters to be approximated regardless of the number of training instances. Conversely, in 
non-parametric models, the number of parameters is not fixed and depends on the amount 
of the training data.

But how can we identify the closest neighbors of a given data point? First, we need a distance measure 
to quantify the proximity between two points. The most straightforward metric of this kind is the 
Euclidean distance we encountered in Chapter 2, Detecting Spam Emails. Consequently, the nearest 
neighbors to the new sample should be the ones with the smallest Euclidean distance. Notice that a 
distance equal to zero implies that the points are identical.

Suppose that the features of two samples in the dataset are represented with two vectors. Let 
𝑃𝑃 = (𝑝𝑝1, 𝑝𝑝2,… , 𝑝𝑝𝑚𝑚)  and 𝑄𝑄 = (𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑚𝑚)  signify the two feature vectors in m-dimensional 
space. Their Euclidean distance is defined as the following:

To make the discussion easier, we consider each sample to have only two features. For the two-dimensional 
space, the equation is simplified to the Pythagorean theorem we all know from high school. Figure 
3.12 shows the distance between points A and B schematically and algebraically. An easy mnemonic 
is that surface of III is equal to the surface of I plus the one of II:

Figure 3.12 – The Pythagorean theorem

𝑑𝑑(𝑃𝑃, 𝑄𝑄) = √∑(𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1
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Let us now formalize the whole process through an example. Suppose we have the data points shown 
in Figure 3.13 that belong to one of two classes, tagged with the symbols x and o:

Figure 3.13 – KNN classification for two classes (x and o) and two features (F1 and F2)

When a new data point arrives (shown with a question mark in A of Figure 3.13), we must calculate the 
distance between the sample and every other data point in the training set. First, we narrow the search 
using different values for K, as shown in B of Figure 3.13. Specifically, we use K = 3, 6, 9 and examine 
the closest neighbors in each case. Finally, we assign the neighborhood’s most frequent class (C in 
Figure 3.13), which is why the new sample receives the label o. It is not uncommon to obtain different 
classifications for each value of K and experimentation is the only way to know which works better.

Note that Euclidean distance is just one of the candidate distance measures in KNN. Other popular 
options are the Manhattan distance and the Minkowski distance, defined respectively as the following:

The Minkowski distance is a generalization of the other two. When q=1, it becomes the Manhattan 
distance, and for q=2, it becomes the Euclidean one. We can now proceed and use KNN to classify 
the newsgroup corpus.

∑|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|
𝑚𝑚

𝑖𝑖=1
           𝑎𝑎𝑎𝑎𝑎𝑎          (∑(|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|)𝑞𝑞

𝑚𝑚

𝑖𝑖=1
)

1
𝑞𝑞
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Performing feature extraction

After boosting our knowledge of the theoretical aspects behind KNN, we can apply the algorithm to 
our topic classification problem. We already saw that the fetch_20newsgroups corpus consists 
of 20 different categories during the exploratory analysis. To make the example more concrete, we 
restrict the analysis to five categories, as shown in the following code, using alt.atheism, comp.
graphics, misc.forsale, rec.autos, and sci.crypt: 

# Select the following five categories.

categories = ['alt.atheism', 'comp.graphics', 'misc.forsale', 
'rec.autos', 'sci.crypt']

 

# Load data only for the specific categories.

train_data = fetch_20newsgroups(subset='train', 
categories=categories, random_state=123)

test_data = fetch_20newsgroups(subset='test', 
categories=categories, random_state=123)

# Create the tf-idf vectorizer.

vectorizer = TfidfVectorizer(stop_words='english')

# Generate the tf-idf matrix for the two sets.

tfidf_train = vectorizer.fit_transform(train_data.data)

tfidf_test = vectorizer.transform(test_data.data)

Let’s now print the shape of the sets:

print(tfidf_train.shape)

>> (2838, 39828)

print(tfidf_test.shape)

>> (1890, 39828)

The training and test sets consist of 2838 and 1890 samples, respectively, which yields a 60:40 
proportion between the two groups. Moreover, notice the usage of English stop words in the tf-idf 
vectorizer and that no stemming or lemmatization occurs. The samples contain both the body and the 
metadata of the news posts. Finally, we pass random_state (seed) in the fetch_20newsgroups 
function to make all subsequent results reproducible. This step ensures that the same samples are read 
during data shuffling for the training and test sets. 
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Note
The seed is a common technique in programming when some pseudo-random number 
sequences must be generated. It ensures that the exact numbers are created in every code run.

Before incorporating the classifier, we need to perform another critical step.

Performing cross-validation

We already mentioned that different values of the hyperparameter K yield different results. So while 
choosing a value for K, the question is what it should be. One option is to manually set a range of values 
and repetitively test the algorithm on the dataset. However, this approach can be time-consuming, 
especially when we need to test an extensive range of values. Hopefully, a more elegant technique can 
assist in fine-tuning the hyperparameters, called cross-validation. The method assumes the burden 
of the calculation by following three basic steps: 

1.	 Partitioning the data into several subsets (folds)

2.	 Holding out one of the subsets each time and training the model with the rest

3.	 Evaluating the model with the holdout test

There are different types of cross-validation, and k-fold is one of them. Figure 3.14 shows an example 
of a five-fold cross-validation case:

Figure 3.14 – A five-fold cross-validation example

We train the model using four folds during each iteration and evaluate it using the test fold. After the 
fifth iteration, we average the values of all the evaluation scores and report the result. By alternating 
the algorithm parameters and repeating the same procedure, we can find their appropriate values (in 
our case, the value of K). 

Let’s see the actual implementation of this process in the following code snippet. We investigate values 
of K between 1 and 100 using the training set:

from sklearn.model_selection import cross_val_score

from sklearn.neighbors import KNeighborsClassifier
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import scipy.sparse as sp

# List of possible number of neighbors.

neighbors_values = list(range(1, 100))

# List of the mean scores.

mean_scores = []

Next, we perform the cross-validation:

# Perform 10-fold cross-validation.

for n in neighbors_values:

    

    # Create the classifier.

    classifier = KNeighborsClassifier(n_neighbors=n)

    

    # Obtain the cross-validation scores.

    scores = cross_val_score(classifier, tfidf_train, train_
data.target, cv=10, scoring='accuracy')    

    # Store the mean value of the scores.

    mean_scores.append(scores.mean())

     

    # Calculate the errors.

    errors = [1 - x for x in mean_scores]

    

    # Obtain the best value for the hyperparameter.

    best_value = neighbors_values[errors.index(min(errors))]

Using 10 folds is very common in practical problems. Finally, we print the best value for K:

print(best_value)

>> 94

The output suggests a K equal to 94. Although it is an even number, there is a very low probability of 
producing any ties during inference. We can now proceed in the next section, train the KNN model 
on the training set, and evaluate it on test one.



Classifying Topics of Newsgroup Posts90

Performing classification

Creating, training, and testing the KNN involves the typical steps we executed in Chapter 2, Detecting 
Spam Emails, for the SVM and the Naïve Bayes classifiers. The following code shows how to implement 
the same steps for the KNN:

import seaborn as sns

from sklearn.metrics import confusion_matrix

# Create the classifier.

knn_classifier = KNeighborsClassifier(n_neighbors=94)

# Fit the classifier with the train data.

knn_classifier.fit(tfidf_train, train_data.target)

# Get the predicted classes.

test_class_pred = knn_classifier.predict(tfidf_test)

# Calculate the accuracy on the test set.

metrics.accuracy_score(test_data.target, test_class_pred)

>> 0.9052910052910053

The accuracy is around 90.5%, which is quite a decent result. Next, we create and print the confusion 
matrix:

# Create the confusion matrix.

cm = confusion_matrix(test_data.target, test_class_pred)

# Plot confusion_matrix.

fig, ax = plt.subplots(figsize=(15, 5))

sns.heatmap(cm, annot=True, cmap="Set3", fmt="d", 
xticklabels=categories, yticklabels=categories)

ax.set_yticklabels(categories, rotation=0)

plt.ylabel('Actual')

plt.xlabel('Predicted')

Figure 3.15 shows the output:
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Figure 3.15 – A confusion matrix of the KNN classification

The confusion matrix provides a better analysis of the strengths and weaknesses of the model. 
Specifically, each row (or column) represents the instances in the actual class, while each column (or 
row) represents the instances in the predicted one. In the main diagonal, we quantify the number of 
samples for which the predicted label equals the actual one. The higher the diagonal values, the better 
it is – ideally, all the other elements should be zero. Confusion matrixes are a helpful visualization 
to identify the types of error, such as which of the classes are most often confused by the model. For 
example, in our case, 24 of the misc.forsale posts are mistakenly classified as rec.autos 
posts. The previous result is not particularly surprising, as we expect that a few sale posts can also 
refer to automobiles. We can experiment with other algorithms to attack these errors, fine-tune their 
hyperparameters, get more training data, or even merge the confused classes.

Next, we test the performance of KNN after removing any metadata from the samples in the dataset. 
The reason is to verify whether headers such as From and Subject impact the classification task. 
Moreover, we want to prevent KNN from overfitting metadata that includes headers (newsgroup 
headers), footers (blocks at the ends of posts that seem to be signatures), and quotes (lines that 
appear to be quoting another post). During the load of the newsgroup dataset, it is feasible to perform 
this action using the remove parameter, as shown in the following code: 

# Load data only for the specific categories.

train_data = fetch_20newsgroups(subset='train', 
categories=categories, random_state=123, remove=('headers', 
'footers', 'quotes'))

test_data = fetch_20newsgroups(subset='test', 
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categories=categories, random_state=123, remove=('headers', 
'footers', 'quotes'))

Rerunning the code of this section gives a new result:

# Calculate the accuracy on the test set.

metrics.accuracy_score(test_data.target, test_class_pred)

>> 0.20952380952380953

21% accuracy indicates a significant drop, and metadata eventually proves to be a valuable knowledge 
source for KNN. Perhaps specific keywords in the subject or the presence or absence of certain headers 
are critical factors for the efficiency of the KNN model. Let’s conclude this section with a discussion.

Comparison to the baseline model

Obtaining an accuracy of 21% is a terrible result, but compared to what? To answer this question, we 
perform the following thought experiment. First, suppose that we are presented with a new sample 
and asked to label it with one of the five classes from Figure 3.15. Making an arbitrary decision yields 
a correct label one out of five times (20%). We simply chose one of the five categories randomly. Any 
ML algorithm to offer utility for a specific problem must achieve accuracy better than this value.

Another strategy is to check the training data and always pick the category with the most training 
samples. The assumption is that more frequent categories in the training set should also have more 
samples in the test one. Although our dataset is balanced, there are categories with a few more instances 
than the others (see Figure 3.1). The following code shows the number of samples for the categories 
used in this section:

samples_per_category

>> ... 'sci.crypt': 991, ... 'alt.atheism': 799, ... 'rec.
autos': 990, ... 'comp.graphics': 973, ... 'misc.forsale': 975, 
...}

In this case, the sci.crypt category has the most samples, and we can get their number from the 
training and test sets respectively:

len(fetch_20newsgroups(subset='train', categories=['sci.
crypt']).data)

>> 595

len(fetch_20newsgroups(subset='test', categories=['sci.
crypt']).data)

>> 396
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Based on the previous calculations, we decipher that 5952838 = 21%  of the samples in the training set are 

from sci.crypt. If we assign this category to every sample in the test set, we are correct 3961890 = 20.9%  

of the time. The classifier that always predicts the majority category is called ZeroR, the simplest 
possible classifier. 

Both strategies presented in this section help determine a baseline performance to benchmark more 
sophisticated ML algorithms. This performance is a reference point and creating a baseline is essential 
before resorting to a better solution. In our case study, an accuracy of 21% (KNN without metadata) 
equals the two baseline values, which is why the corresponding model doesn’t offer any utility. 

The following section introduces another typical ML algorithm and contrasts its performance with KNN.

Introducing the random forest algorithm
The method discussed in this section is based on the concept of ensemble learning, where multiple 
models (in our case, classifiers) are generated and combined to solve a particular problem. You can think 
of ensemble learning as having diverse people who bring different perspectives to the table for a decision. 
Ultimately, you want to harness those different perspectives and ensure a joint decision is reached.

A real-world example should shed some light on this type of learning. Suppose that you visit a city for 
the first time. After an exhausting day, there is finally some free time for dinner. One possible strategy 
in front of many dining choices is to walk around the city to find a good restaurant, a bistro, or a 
takeaway. Wandering around, the aim is to make the best possible choice for dinner based on several 
criteria (as in features), such as the quality of service, the ambience, and menu prices. Essentially, 
your brain runs a classification algorithm based on these features to assign a label to each place, for 
example, good, neutral, and bad. 

A more efficient strategy is to exploit one of the numerous online services that provide suggestions, 
comments, or reviews and rely on many other classifiers (as in platform users). Based on their feedback, 
you can safely choose the right place, considering the one with the highest number of positive votes. 
Why is this strategy better? First, you cannot possibly check every option except in a tiny geographical 
area. Even if you made the best choice compared to all the ones you have seen, there might be a better 
option lurking elsewhere. In ML terminology, this situation is referred to as being stuck in a local 
minimum (we will revisit this topic in Chapter 4, Extracting Sentiments from Product Reviews).

A second impediment is that every individual judgment has biases. By taking the average over a larger 
population, we can cancel, to some extent, this idiosyncratic noise. For instance, one’s eating habits 
or cultural background can make specific choices irrelevant, as in the case of vegetarian restaurants. 
Consequently, the wisdom of the crowd proves to be beneficial. 

Finally, splitting the problem into multiple sub-problems can reduce the risk of a wrong decision. For 
example, some people prioritize the quality of the food, others prioritize the quality of service, and 
others focus on the price. As a result, restaurants that don’t do well in many criteria (sub-problems) 
are less likely to be chosen.
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The random forest method exploits the benefits of ensemble learning by constructing a multitude 
of decision trees on randomly selected data samples. Each decision tree produces its own prediction 
and the method is responsible for choosing the best result by voting. Decision trees are one of the 
most popular supervised ML algorithms because their models are intuitive and easy to explain. As 
the name suggests, the data is represented in a tree hierarchy where each internal (non-leaf) node is 
labeled with an input feature. In addition, the arcs in the internal nodes signify possible values for a 
specific feature. Finally, each leaf represents a class. 

The created model can be used to visually and explicitly represent decisions. Consider the example 
in Figure 3.16 used by a bank to determine the eligibility for a loan: 

Figure 3.16 – A decision tree for determining the eligibility for a loan

Four features are scrutinized in the tree: Credit history, Age, Has guarantor?, and Annual income, 
which also determine its depth. Usually, decision trees have more nodes and a greater depth than the 
one illustrated in the figure. The prediction starts from the first (root) node, and after examining the 
values in the arcs, we follow the corresponding branch to the next node. For instance, a person with 
good credit history under 30 that lacks a guarantor is not eligible for a loan.

But how is the tree constructed in the first place? Which feature should appear higher in the hierarchy? 
Is it obligatory to use all features? We deal with these questions in the subsequent section.

Contracting a decision tree

There is no universal technique for contracting a decision tree; through the years, different methods 
have been proposed in the literature. Here, we examine one alternative referred to as Iterative 
Dichotomiser 3 (ID3). The method utilizes two well-known metrics, named entropy and information 
gain. Entropy is a measure of uncertainty or disorder; the more certain or deterministic an event is, 
the less entropy it presents, and it’s defined as follows:

𝐸𝐸(𝑆𝑆) =∑−𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝𝑖𝑖
𝐶𝐶

𝑖𝑖=1
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Where:

•	 𝑆𝑆 =  The current dataset for which we calculate the entropy

•	 𝐶𝐶 =  The set of classes in S

•	 𝑝𝑝𝑖𝑖 =  The percentage of class i to the number of elements in set S

Interesting fact
We encounter entropy in diverse scientific fields. It refers to the notion that everything in the 
universe eventually moves from order to disorder, and entropy quantifies that change.

Suppose we want to calculate the entropy of a fair and a biased coin. Flipping the first coin has a 0.5 
probability for a head and 0.5 for a tail. For the second case, the probabilities are 0.9 and 0.1, respectively. 
Therefore, the entropy in both scenarios is the following:

and

Essentially, the smaller entropy value for the biased coin indicates that we are more certain of the 
outcome. Of course, this makes sense since we get a head for 9 out of 10 throws. How about throwing 
a fair die? In this case, we are even more uncertain about the outcome compared to the fair coin, as 
the entropy is the following:

But how does entropy assist in the construction of a decision tree? The answer is that we begin from the 
root node and construct the tree in steps. Thus, looking again at Figure 3.16, we determine to put the 
attribute Age after the attribute Credit history because this choice reduces the uncertainty (entropy) 
more than all the other candidate features. In the same way, we perform many iterations to position all 
attributes in the right place of the decision tree. The role of the information gain metric is to quantify 
the uncertainty reduction after splitting S on an attribute A. Specifically, it computes the difference 
between the entropy before and the average entropy after the split. The metric is defined as follows:

𝐸𝐸("𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐") = −0.5 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙20.5 − 0.5 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙20.5 = 1 

𝐸𝐸("𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐") = −0.9 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙20.9 − 0.1 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙20.1 = 0.47 

𝐸𝐸("𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑") = − 1
6 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2

1
6 − 1

6 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2
1
6 − 1

6 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2
1
6 − 1

6 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2
1
6 

−1
6 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2

1
6 −

1
6 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2

1
6 = 2.5849 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑆𝑆, 𝐴𝐴) = 𝐸𝐸(𝑆𝑆) − ∑ 𝑝𝑝𝑡𝑡𝐸𝐸𝑡𝑡

𝐾𝐾

𝑡𝑡=1
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Where:

•	 𝐾𝐾 =  The subsets created from splitting S on attribute A

•	 𝑝𝑝𝑡𝑡 =  The percentage of the number of elements in t to the number of elements in set S

•	 𝐸𝐸𝑡𝑡 =  The entropy of the subset t

A practical example using ID3 should clarify the tree construction process. We will focus on the 
problem presented earlier for determining the eligibility for a loan based on a contrived dataset. Table 
3.1 shows 14 instances from previous decisions that can be utilized to create a decision tree classif﻿ier:

Table 3.1 – Instances for determining the eligibility for a loan based on four attributes

The first step is identifying the tree’s root node among the four attributes: income, history, age, and 
guarantor. Which one should that be? Based on the previous discussion, the answer is to select the 
attribute that exhibits the highest information gain. Let’s see how.

The entropy using all 14 instances in Table 3.1 is based solely on the number of positive (yes) and 
negative (no) answers. Therefore, we calculate the following:

Now, we consider the income attribute and regroup the instances in Table 3.2 based on its three 
possible values (high, moderate, and low):

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) = −𝑝𝑝(𝑦𝑦𝑦𝑦𝑦𝑦) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑦𝑦𝑦𝑦𝑦𝑦) − 𝑝𝑝(𝑛𝑛𝑛𝑛) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑛𝑛𝑛𝑛) = −( 6
14) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (

6
14) − ( 8

14) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (
8
14)

= 0.985 
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Table 3.2 – Instances grouped by the annual income attribute

We can now calculate the entropy in each case:

The information gain is as follows:

Similarly, the gain for the other attributes is the following:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ℎ𝑖𝑖𝑖𝑖ℎ) = −(22) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (
2
2) − (02) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (

0
2) = 0 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = −(47) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (
4
7) − (37) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (

3
7) = 0.985 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙) = −(05) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (
0
5) − (55) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (

5
5) = 0 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 0.985 − 2
14 ∙ 0 − 7

14 ∙ 0.985 − 5
14 ∙ 0 = 0.493 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 0.441 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎𝑎𝑎𝑎𝑎) = 0.02 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) = 0.011 
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Based on the previous results, the income attribute has the highest information gain, so we select 
it as the first node of the tree. Next, we move to the second iteration of the algorithm and construct 
Table 3.3 for income = moderate:

Table 3.3 – Instances and conditional probabilities when income = moderate

The entropy in each case is now as follows:

Using Table 3.2, we can extract the following quantity:

So, we can now proceed and calculate the gain:

After performing the same steps for the age and guarantor attributes, we can extract the information 
gain in all cases:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚. |ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) = −(33) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (
3
3) − (03) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (

0
3) = 0 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚. |ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. ) = −(11) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (
1
1) − (01) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (

0
1) = 0 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚. |ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑏𝑏𝑏𝑏) = −(03) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (
0
3) − (33) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (

3
3) = 0 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = −(47) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (
4
7) − (37) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 (

3
7) = 0.985 

𝐼𝐼𝐼𝐼𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 0.985 − 3
7 ∙ 0 − 1

7 ∙ 0 − 3
7 ∙ 0 = 0.985 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑎𝑎𝑎𝑎𝑎𝑎) = 0 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) = 0 
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This time we select history as the next node in the tree. According to Table 3.1, when income = high, 
the decision to give a loan is always yes. Conversely, when income = low, the decision is no. These 
two constitute the leaf nodes under income. There is no need to present the other algorithm iterations, 
but hopefully, you get the basic idea. The output of the steps taken in this section is the incomplete 
decision tree shown in Figure 3.17:

Figure 3.17 – An incomplete decision tree for the eligibility of a loan task

In practical problems, we can stop the expansion of the tree before using all features. This strategy is 
called the pruning of branches in ML terminology, which reduces the depth of the decision tree and 
prevents overfitting. Before concluding this section, let’s make a final remark. 

We already mentioned that random forest algorithms utilize many trees to make a decision. But how is 
it ensured that these trees are different? If we feed the same training data to the algorithm, it is logical 
to think that the same model is created in all iterations. The solution, in this case, is to allow each tree 
to randomly sample from the dataset with replacement. By sampling with replacement, each randomly 
selected sample is put back into the pool of samples and theoretically can be selected multiple times. 
The difference in the samples yields different trees, a process known as bagging. Another technique 
allows each tree to pick only from a random subset of features instead of using all of them. The result 
in both cases is a lower correlation among trees and more diversification.

But enough with the theory. Let’s apply the method to our dataset.

Performing classification

In the code that follows, we create a random forests classifier and train it using the dataset without 
including the headers in each sample: 

from sklearn.ensemble import RandomForestClassifier

# Create the classifier.

rf_classifier = RandomForestClassifier(n_estimators=100, 
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random_state=123)

# Fit the classifier with the train data.

rf_classifier.fit(tfidf_train, train_data.target)

# Get the predicted classes.

test_class_pred = rf_classifier.predict(tfidf_test)

# Calculate the accuracy on the test set.

metrics.accuracy_score(test_data.target, test_class_pred)

>> 0.8

The accuracy reaches 80%, which is astonishingly better than the result obtained with the KNN 
classifier (21%). This significant difference is more evidence of the need to apply different classifiers 
to a given problem. 

In the Executing dimensionality reduction section, we saw how PCA and LDA help to visualize high-
dimensional data. Techniques of this kind can also be applied during classification to reduce the 
feature space of the problem. Too many features can degrade the performance of ML algorithms while 
increasing computation and memory requirements. Therefore, we incorporate a suitable method for 
dimensionality reduction called Singular Value Decomposition (SVD). SVD works well with sparse 
matrices frequently encountered in text classification. We won’t delve into the details of this method 
in this chapter, but the idea as before is to express the feature space in a new components system. In 
Chapter 5, Recommending Music Titles, we revisit SVD and provide more information on its mechanics. 
In the following code snippet, we apply SVD to the training and test sets: 

from sklearn.decomposition import TruncatedSVD

# Load data only for the specific categories.

train_data = fetch_20newsgroups(subset='train', 
categories=categories, random_state=123)

test_data = fetch_20newsgroups(subset='test', 
categories=categories, random_state=123)

# Generate the tf-idf matrix for the two sets.

tfidf_train = vectorizer.fit_transform(train_data.data)

tfidf_test = vectorizer.transform(test_data.data)

# Calculate 200 components for the train and test sets.
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svd = TruncatedSVD(n_components=200, algorithm='randomized', 
n_iter=5, random_state=123, tol=0.0)

svdComponents_train = svd.fit_transform(tfidf_train.toarray())

svdComponents_test = svd.transform(tfidf_test.toarray())

print(svdComponents_train.shape)

>> (2838, 200)

Each of the 2838 samples in the training set is encoded with an array of 200 elements (the components 
of SVD). These elements constitute the features for the random forest classifier. We can also plot the 
percentage of the cumulative variance in a range of 1 to 200 components of SVD using the following 
code: 

# Plot the cumulative variance percentage.

explained = svd.explained_variance_ratio_.cumsum()

plt.figure(figsize=(8, 8))

plt.plot(explained, '.-', ms=6, color='b')

plt.xlabel('#Num of components', fontsize= 14)

plt.ylabel('Cumulative variance percentage', fontsize=14)

plt.xticks(fontsize=14)

plt.yticks(fontsize=14)

Figure 3.18 shows the output:

Figure 3.18 – The cumulative variance percentage per number of SVD components
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According to Figure 3.18, the 200 components capture around 30% of the variance in the dataset. 
Next, we create, train, and test the classifier:

# Fit the classifier with the train data.

rf_classifier.fit(svdComponents_train, train_data.target)

# Get the predicted classes.

test_class_pred = rf_classifier.predict(svdComponents_test)

# Calculate the accuracy on the test set.

metrics.accuracy_score(test_data.target, test_class_pred)

>> 0.9047619047619048

The random forest classifier improves its performance and outputs an accuracy equal to 90% on the 
test set. If we rerun the same code, using KNN and 10 components for SVD (n_components=10), 
the accuracy is again 90%. This result is quite intriguing for two reasons. First, when we fed the same 
dataset (with no metadata), KNN failed to create an efficient model, as the accuracy was 21%. On the 
other hand, a much smaller representation with ten features provided the same performance as a model 
with 200 features. In general, there might be several possible and more complex alternatives for solving 
a particular problem. The rule of thumb is that precedence should be given to simplicity; the simpler 
explanation of the problem must be preferred between two competing theories. This principle is called 
Occam’s razor and finds application when choosing a ML model and in many everyday situations.

Simpler can be better!
Here is a question for you: find the next number in the sequence: 1, 3, 5, 7, _.

Logically, anyone’s answer would be 9. Right?

Wrong! The correct answer is 217,341 based on the following function:
𝑓𝑓(𝑥𝑥) = 9055.5 ∙ 𝑥𝑥4 − 90555 ∙ 𝑥𝑥3 + 316942.5 ∙ 𝑥𝑥2 − 452773 ∙ 𝑥𝑥 + 217331 

𝑓𝑓(1) = 1, 𝑓𝑓(2) = 3, 𝑓𝑓(3) = 5, 𝑓𝑓(4) = 7 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(5) = 217341 

This example shows that complex functions can sometimes output counterintuitive results. 
Therefore, according to Occam’s razor principle, a simpler function is preferable in this case:
𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥 − 1) + 2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(1) = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

This section introduced the random forest classifier and provided a more profound look into its 
mechanics. We also had the opportunity to apply dimensionality reduction to the feature set and 
perform classification. Contrasting the performance of the models provided a better insight into 
the different issues. The subsequent section introduces a state-of-the-art representation of text data 
employed for the same task.
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Extracting word embedding representation
We will start this section with an example to facilitate understanding. Suppose you are assigned to 
create the matching algorithm for a new dating service. This algorithm must identify people with 
similar characteristics and propose candidate profiles. Upon registering to the system, each user is 
asked a series of questions crafted to assess the five personality traits. The Big Five is a taxonomy for 
human personality and psyche. It includes extraversion, agreeableness, openness, conscientiousness, 
and neuroticism. Based on their answer, each user receives a score (percentage) for each trait according 
to the grayscale values of Figure 3.19:

Figure 3.19 – Grayscale values that signify the intensity of a characteristic

Figure 3.20 illustrates how we can visualize the users of the platform with a personalized grayscale 
vector that consists of five elements:

Figure 3.20 – Grayscale vectors of personality traits

Having these personality configurations at our disposal, we can suggest possible matches – vectors 
that look alike indicate similarity. By observing the profile of five candidates, what do you think the 
best match for User is? Most likely Candidate 4, right? The corresponding grayscale vectors seem to 
be visually similar.

In the following code, we translate grayscale percentages into actual numerical values and calculate 
the cosine similarity between the vectors: 

import numpy as np

from sklearn.metrics.pairwise import cosine_similarity
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# Create the data for our user and the candidate profiles.

user = np.array([[0.41, 0.22, 0.85, 0.08, 0.98]])

candidates = np.matrix([[0.2, 0.93, 0.83, 0.39, 0.19],

                        [0.89, 0.87, 0.7, 0.18, 0.25],

                        [0.72, 0.03, 0.05, 0.82, 0.06],

                        [0.43, 0.78, 0.79, 0.02, 0.86],

                        [0.02, 0.03, 0.71, 0.39, 0.42]])

# Calculate and print the cosine similarity.

for candidate in candidates:

    print(cosine_similarity(user, candidate))

>> [[0.65631656]]

[[0.69953423]]

[[0.31021596]]

[[0.91916887]]

[[0.84170647]]

The output of this process proves us correct. The fourth candidate has the highest cosine similarity with 
the reference user. Therefore, our dating application can now suggest their profile to User. Of course, 
one can argue that finding somebody too similar to you is not the best match, but that’s another story!

Understanding word embedding

Now that you have grasped the reasoning behind the previous example, it should be straightforward 
to understand word embedding. Just as the five traits represent each person as a unique point in a 
five-dimensional space, word embedding represent words in a multidimensional space, typically in 
the order of hundreds. Following the same approach as before, we show in Figure 3.21 the embedding 
vector of different English words:
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Figure 3.21 – The embedding vector of various English words

Each vector consists of 20 grayscale values, artificially constructed to facilitate the discussion. Take 
a look, for example, at the words for countries. They differ in all dimensions except for the 13th one. 
In the same manner, capital names match on the 3rd dimension, humans on the 9th (the dimension 
of humanity), boys and girls on the 9th and 6th (presumably the dimension of youth), and king and 
queen on the 9th and 17th (perhaps the dimension of royalty). 

So, word embedding are a way to represent textual data numerically and also identify relationships 
between words. For this reason, they can lead to more powerful ML models by encapsulating the 
linguistic meaning of words. That is why they have gained a predominant role during the last few years.

In Figure 3.22, we embed the points of a set of English words into a three-dimensional space: 
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Figure 3.22 – Word embedding in a three-dimensional space

As expected, similar words appear to be closer – for example, verbs in the present tense, such as play 
and walk. However, there is another interesting phenomenon. The direction and distance (signified with 
the arrow) from France to Paris are the same as from Germany to Berlin. This unique characteristic 
allows building word analogies, using statements such as “a is to b as c is to d.” For example, “Paris is to 
France as Berlin is to Germany,” or “King is to man as queen is to woman.” This property is particularly 
intriguing since the embeddings were not initially created to perform this task. Let’s now discuss a 
related functionality behind this text representation. 

Performing vector arithmetic

We have seen that word embedding permit the capture of different semantic and syntactic similarity 
levels between words. For instance, the country-capital relation in Figure 3.22 is an example of a 
semantic pattern, whereas the verb in present-verb in past signifies a syntactic pattern. So, consider 
the following equation and try to think what the correct answer is:

Did you guess the right response? We should get the word queen by subtracting the man-ness from the 
king and adding woman-ness to the result. Based on Figure 3.22, we can also extract similar relations:

and

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 − 𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = ? 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
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We essentially subtract embedding vectors in all these equations, a process called vector arithmetic. 
With the gensim module, we can perform vector arithmetic using the pre-trained vectors model 
GoogleNews-vectors-negative300.bin.gz, which contains 3 million words and phrases. 
In the following code example, we perform several operations using the words from Figure 3.22. Notice 
that according to your system configuration, it might take several minutes to load and execute the code:

from gensim.models import KeyedVectors

# Load the Word2Vec model.

model = KeyedVectors.load_word2vec_format(./data/GoogleNews-
vectors-negative300.bin', binary=True)

# Perform various word vector arithmetics.

model.most_similar(positive=['woman', 'king'], 
negative=['man'], topn=1)

>> [('queen', 0.7118192911148071)]

Let’s see another example:

model.most_similar(positive=['germany', 'paris'], 
negative=['france'], topn=1)

>> [('berlin', 0.48413652181625366)]

Next, we use verbs in the present and past tense:

model.most_similar(positive=['play', 'walked'], 
negative=['walk'], topn=1)

>> [('played', 0.6983103156089783)]

Another interesting fact is the gender biases often found in word embedding. As they are built using 
large text corpora, it is no surprise that they can mirror stereotypes often found in those texts. This 
situation is an unintended side effect and active research tries to remove these biases that can adversely 
affect software systems. For example, man is to schoolteacher as woman is to housewife. Similarly, we have: 

The following code snippet verifies this result:

model.most_similar(positive=['man', 'psychologist'], 
negative=['woman'], topn=1)

>> [('psychiatrist', 0.639894962310791)] 

𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 −  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
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Equipped with a good understanding of word embedding, it’s about time to use them for classification. 
The sole change in the Python implementation concerns the word representation part, where instead 
of tf-idf, we incorporate word embedding.

Performing classification

Using the same pre-trained vectors of the previous section, we calculate the embedding vector of 
each word in sample:

import re

def get_word_vector(sample):

    

    wv = np.zeros(300) # Word vector.

    n = 0 # Number of words that have a word vector.

    

    # Iterate over all words in the sample.

    for word in re.sub('\\(|\\)|\n|\t|  |,|\.|\?|/|=|\"', "", 
sample).split(" "):

        

        # The word might not be present in the model.

        if word.lower() in model:

            wv = np.add(wv, model[word.lower()])

            n += 1

    if n == 0: # Use a dummy word.

        wv = np.add(wv, model["empty"])

    else: # Get an average value by dividing with n.

        wv = np.divide(wv, n)

    return wv

Something crucial to note is that the word embedding for each sample is an average value of the 
embedding for each word in it. Next, we iterate over all samples in input:

def get_word_vect_from_data(input):

    # Word vectors of the samples.
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    wv_vect = []

    # Iterate through the data.

    for sample in input:

    

        # Get the word vector.

        wv = get_word_vector(sample)

        # Store the result for the sample.

        wv_vect.append(wv)

    return wv_vect

Finally, we extract the word embedding for both the training and test sets:

# Get the word vectors for the training and test data.

Wv_train = get_word_vect_from_data(train_data.data)

wv_test = get_word_vect_from_data(test_data.data)

As before, we train and evaluate the random forest classifier: 

# Fit the classifier with the train data.

Rf_classifier.fit(wv_train, train_data.target)

# Get the predicted classes.

Test_class_pred = rf_classifier.predict(wv_test)

# Calculate the accuracy on the test set.

Metrics.accuracy_score(test_data.target, test_class_pred)

>> 0.8222222222222222

This time, the performance is around 82%, less than we initially anticipated. Presenting such a well-
advertised text representation elevated the expectation barrier for the model’s performance. Most 
probably, averaging the word embedding of all the words in a sample deteriorated performance. 

There are a plethora of resources for word embedding in many languages; an alternative way to 
incorporate them into your code is using third-party tools. The following section provides an example.
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Using the fastText tool

Before we finish the chapter, let’s examine a popular tool that offers pre-trained word embedding 
models. fastText (https://fasttext.cc/) is an open source tool created by Facebook for text 
representation and classification. The following code utilizes the same training and test set as before, 
which we restructure in the appropriate form: 

import fasttext

# Read and clean the data.

fasttext_train_data = [re.sub('\\(|\\)|\n|\
t|  |,|\.|\?|/|=|\"', "", sample) for sample in train_data.
data]

fasttext_test_data = [re.sub('\\(|\\)|\n|\t|  |,|\.|\?|/|=|\"', 
"", sample) for sample in test_data.data]

# Read and change the class labels.

fasttext_train_target = [("__label__" + str(sample) + " ") for 
sample in train_data.target]

fasttext_test_target = [("__label__" + str(sample) + " ") for 
sample in test_data.target]

# Element wise concatenation of the two lists.

fasttext_train = [i + j for i, j in zip(fasttext_train_target, 
fasttext_train_data)] 

Let’s see an example from the training set:

# Print a sample.

fasttext_train[0]

>> '__label__2 From: AGRGB@ASUACADBITNETSubject: 
Re: CDs priced for immediate saleArticle-ID: 
ASUACAD93096004253AGRGBOrganization: Arizona State 
UniversityLines: 10Hey nowThe following cds are still available 
Offerstrades consideredGowan - Lost BrotherhoodKatrina & the 
Waves - Break of HeartsJoe Cocker - LiveCharles Neville - 
DiversityThanksRich'

https://fasttext.cc/
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Now, we store the data and train the model: 

# Write the data into a file.

with open('./data/fasttext.train', 'w') as f:

    for item in fasttext_train:

        f.write("%s\n" % item)

        

# Train the model.

fs_model = fasttext.train_supervised(input="./data/fasttext.
train", lr=1.0, epoch=100)

Using the test set, we can extract the accuracy of the model:

# Get the predictions using the test data.

predictions = fs_model.predict(fasttext_test_data) 

# Assess the model.

fasttext_test_target_pred = [(label[0] + " ") for label in 
predictions[:][0]]

metrics.accuracy_score(fasttext_test_target, fasttext_test_
target_pred)

>> 0.8952380952380953

The fastText-supervised classifier yields an accuracy of around 90%, which is the same as the best 
model so far. Unfortunately, we cannot surpass this threshold, but you are strongly urged to test 
different configurations of all the algorithms presented in this chapter. Then, perhaps you can discover 
a better model!

This section concludes our discussion on word embedding using a popular open source tool. First, we 
investigated the rather peculiar characteristics of word embedding that comprise implicit relationships 
between words on a semantic and syntactic level. These features are beneficial when training on data 
that relies on contextual information, such as human text. In this way, we enhanced our arsenal with 
one more text representation technique along with label, one-hot, and token count encoding, as well 
as tf-idf.

Summary
This chapter followed the path established in the previous chapter, further focusing on more advanced 
techniques for solving the topic classification problem. 



Classifying Topics of Newsgroup Posts112

Specifically, we saw how to extend the exploratory data analysis phase using different plot types 
to help make informed decisions. In this context, we had the opportunity to learn algorithms for 
dimensionality reduction, either for visualization or feature selection. 

Then, we incorporated two supervised ML algorithms and introduced a novel representation of the 
text data based on word embedding. This representation was put into operation using our custom 
classifiers and an open source tool. The next chapter deals with another typical problem in NLP: how 
to perform sentiment analysis on a text corpus.



4
Extracting Sentiments from 

Product Reviews

Deciphering the emotional tone behind a sequence of words finds extensive utility in analyzing survey 
responses, customer feedback, or product reviews. In particular, the advent of social networks offered 
new possibilities for people to instantly express their opinions on various issues. Therefore, it is not 
surprising that many shareholders—such as companies, academia, or government—aim to exploit 
public opinion on various topics and acquire valuable insight.

This chapter focuses on another typical problem in natural language processing (NLP): the extraction 
of sentiment from a piece of text. For this reason, we incorporate an open source dataset with customer 
reviews from the Amazon online store. Exploratory Data Analysis (EDA) is again the first task in the 
pipeline, which helps us discuss important findings on the input data. During this phase, we create 
different visualizations and enhance our plot construction skills with Python. Next, the journey in 
machine learning (ML) continues with a deeper look at how the model’s parameters are estimated 
using both an intuitive approach and numerical examples. Then, we introduce a state-of-the-art 
architecture that is nature-inspired. Finally, as in the previous chapter, we implement and contrast 
two classifiers for the same task while discussing different implications.

By the end of the chapter, you will feel more confident in your theoretical and programmatic skills 
and develop the proper mindset for solving pertinent problems.

In this chapter, we will go through the following topics:

•	 Creating models for predicting continuous values

•	 Acquiring a better understanding of how algorithms learn from data

•	 Examining optimization techniques

•	 Learning how to avoid overfitting

•	 Introducing state-of-the-art ML architectures

•	 Creating different classification models
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Technical requirements
The chapter’s code has been truncated in certain parts to facilitate reading the content. However, 
the whole code base is available as a Jupyter notebook at the book’s GitHub repository: https://
github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/
tree/main/chapter-04.

Understanding sentiment analysis
You are running for public office, and to increase the chances of being elected, you must perform 
a substantial effort to persuade the voters. This undertaking becomes even more challenging for 
non-sympathizers and ambivalent citizens. Hence, a possible strategy is to focus on less favorable 
regions to your candidacy, which can be identified from the sentiment expressed in social media posts 
in this area. Similarly, suppose you are the CEO of a company that recently deployed a new product. 
This time, you are interested in knowing how your customers perceive it and in understanding their 
opinions. In both scenarios, you should also be concerned about the competition and the sentiment 
against your opponents’ political campaigns or competitor products. All these issues can be addressed 
by performing sentiment analysis: assigning a sentiment label to a piece of text. This task is the 
current chapter’s theme.

Recall the discussion in the Explaining feature engineering section of Chapter 2, Detecting Spam Emails, 
about selecting the appropriate features to perform sentiment analysis on movie reviews. The idea 
was to enumerate high-valence words as either positive or negative and provide a crude sentiment 
categorization of the text. In real-world problems, however, this strategy cannot possibly work. One 
of the reasons is the inherent quirkiness of human languages, where the mix of positive and negative 
words can produce a different valence than initially expected. For instance, the phrase pretty good is 
less positive than good, although it contains the same word plus another positive one. Or, the phrase 
perfect, I missed the meeting has both a positive (perfect) and a negative (missed) word, but the emotional 
tone is evidently sarcastic.

The overarching goal of this chapter is to perform sentiment analysis using a dataset with product 
reviews from Amazon (https://snap.stanford.edu/data/web-Amazon-links.
html). The dataset’s content is around 35 million reviews gathered over 18 years. As there are many 
categories to work with, we use the data about software products. Unfortunately, the corpus does 
not include any explicit sentiment score, thus we incorporate a review rating to assign each sample a 
positive or negative sentiment label. The models created throughout the chapter use labeled samples 
from two categories, focusing on supervised learning and binary classification.

We begin with EDA.

https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-04
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-04
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-04
https://snap.stanford.edu/data/web-Amazon-links.html
https://snap.stanford.edu/data/web-Amazon-links.html
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Performing exploratory data analysis
After browsing the online dataset, we observe different files corresponding to various product categories. 
But before we focus on any particular group, we can explore the data found in the categories.
txt.gz file (https://snap.stanford.edu/data/amazon/categories.txt.gz). 
Looking at its extension, we deduce that it is a compressed archive to occupy less storage space. 
Furthermore, each product is specified by a unique identifier and can be part of multiple categories. 
Figure 4.1 shows two examples from the dataset:

Figure 4.1 – Sample product IDs along with their categories

Python offers the gzip module to read data from a compressed file. So, first, we need to parse 
categories.txt.gz and read both the ID and the categories for each product. In the following 
code snippet, we define a method that does exactly that: iterates over all lines in the file, checks whether 
it refers to a product ID or category, and stores the corresponding value. Let’s see each step one by one:

1.	 First, we create a method to obtain the product categories from a file, define a few variables, 
and open the file for reading:

def readCategories(filename):

  i, productId, d = 0, '', {}

  f = gzip.open(filename, 'rb')

https://snap.stanford.edu/data/amazon/categories.txt.gz


Extracting Sentiments from Product Reviews116

2.	 Next, we iterate over all lines in the file:

  for l in f:

    spacesPos = l.find(b' ')

    l = l.strip().decode("latin-1")

3.	 Let’s check whether the input is a product ID or a product category. In the second case, the 
line starts with a space:

    if spacesPos != -1:

      # The categories are separated by a comma.

      for c in l.split(','):

        # Store the category for a specific product.

        d[i] = {'product/productId':productId, 
'category':c}

        i += 1

    else:

      productId = l # Store the product id.

4.	 Finally, a dataframe with the requested information is returned by the method:

  return pd.DataFrame.from_dict(d, columns=['product/
productId', 'category'],  orient='index')

We can now call the readCategories method for the categories.txt.gz file and obtain 
its data:

df = readCategories('./data/categories.txt.gz')

# Remove duplicate categories for each product.

df = df.drop_duplicates(subset=['product/productId',

      'category'], keep='first')

df.head()

>> product/productId  category

0  B0027DQHA0    Movies & TV

1  B0027DQHA0    TV

2  B0027DQHA0    Music

3  B0027DQHA0    Classical

4  0756400120    Books
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Observe the output for B0027DQHA0, which consists of several product categories. Next, we merge 
the categories for each product into a new dataframe so that we can utilize this information later in 
the chapter:

# Merge the categories for each product.

df_merged = pd.DataFrame(df.groupby('product/productId', as_
index=False)['category'].apply(lambda x: "%s" % ' '.join(x)))

df_merged.head()

>>  product/productId  category

0  0000000868    Books New Used & Rental Textbooks...

1  0000020214    Books

2  0000024341    Books

3  0000025240    Books New Used & Rental Textbooks...

4  0000038504    Books

We can now extract the top five categories based on the number of reviews:

import matplotlib.pyplot as plt

import re

import seaborn as sns

sns.set(font_scale=1.5)

# Get the categories distribution and keep the top 5.

x = df.category.value_counts()

x = x.sort_values(ascending=False)

x = x.iloc[0:5]

Finally, we create a plot for the most popular categories:

# Create the plot.

ax = sns.barplot(x=x.index, y=x.values, alpha=0.8)
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The output is the bar plot shown in Figure 4.2:

Figure 4.2 – Distribution of the top five categories

The bar plot suggests that the most popular category in the dataset is Books, followed by Music. 
Note that an item can be simultaneously part of the Books and Literature & Fiction categories. To 
reduce the computational requirements in this exercise, we focus solely on the Software category 
(not shown in the screenshot). However, the subsequent analysis can be equally applied to the other 
categories. Let’s start!

Using the Software dataset

The samples for the Software items are available in the Software.txt.gz file (https://snap.
stanford.edu/data/amazon/Software.txt.gz), which is also a compressed archive. The 
file includes information about each sample in the dataset with 10 key-value pairs. We use a few of these 
pairs in the exploratory phase and the subsequent sentiment analysis. Figure 4.3 shows an example:

https://snap.stanford.edu/data/amazon/Software.txt.gz
https://snap.stanford.edu/data/amazon/Software.txt.gz
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Figure 4.3 – Information about a sample in the Software category

Based on the information included in Figure 4.3, we implement the parseKeysValues method, 
which sequentially reads the keys and stores their value. Here are the steps:

1.	 First, we create this method, define a variable, and open the file for reading:

def parseKeysValues(filename):

  entry = {}

  f = gzip.open(filename, 'rb')

2.	 Next, we iterate over all lines in the file:

  for l in f:

    l = l.strip()

3.	 Let’s obtain the key-value pairs, which are separated by a colon:

    colonPos = l.find(b':')

    if colonPos == -1:

      yield entry

      entry = {}

      continue

    key = l[:colonPos].decode("latin-1")

    value = l[colonPos+2:].decode("latin-1")
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    entry[key] = value

  yield entry

Now, we can create a method to read the review data, so let’s do the following:

1.	 We define the method and a few variables (num specifies the number of samples to be read):

def readReviews(path, num=-1):

  i = 0

  df = {}

2.	 Next, we iterate over all key/value pairs:

  for d in parseKeysValues(path):

    df[i] = d

    i += 1

    if i == num:

      break

3.	 Finally, we return a dataframe with the data:

    return pd.DataFrame.from_dict(df, orient='index')

We can now call the readReviews method and construct the complete dataframe to be used in 
the analysis that follows:

df_reviews = readReviews('./data/Software.txt.gz')

# Make the scores as float values.

df_reviews['review/score'] = df_reviews['review/score'].
astype(float)

df_reviews[['product/productId', 'review/score', 'review/
text']].tail()

>> product/productId  review/score    review/text

95079  B000068VAN      3.0      I purchased ...

95080  B000068VAN      3.0      my four year...

95081  B000068VAX      1.0      Got this for...

95082  B000068VAX      5.0      Clifford Mus...

95083  B000063W5A      5.0      STATVIEW is ...
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We also need to include the product category in the data. Here’s how we can do this:

df_reviews = pd.merge(df_reviews, df_merged, on='product/
productId', how='left')

df_reviews[['product/productId', 'review/score', 'review/text', 
'category']].tail()

>> product/productId review/score review/text  category

95079  B000068VAN    3.0    I purch...    Softwar...

95080  B000068VAN    3.0    my four...    Softwar...

95081  B000068VAX    1.0    Got thi...    Softwar...

95082  B000068VAX    5.0    Cliffor...    Softwar...

95083  B000063W5A    5.0    STATVIE...    Softwar...

Let’s get the total number of samples:

df_reviews.shape

>> (95084, 11)

The previous output informs us that there are 95084 reviews in the corpus. Moreover, we know 
that the dataset in the online repository contains duplicates, which we remove with the code 
snippet that follows:

# The dataset is known to contain duplicates.

df_reviews = df_reviews.drop_duplicates(subset=['review/
userId','product/productId'], keep='first', inplace=False)

df_reviews.shape

>> (84991, 11)

This time, the total number of samples becomes 84991. If necessary, we can reduce its size by filtering 
the set with a specific sub-category. The following code fragment shows the way:

# Keep only the reviews for the Software category (in practice 
all).

df_software = df_reviews.loc[[i for i in df_
reviews['category'].index if re.search('Software', df_
reviews['category'][i])]]

df_reviews.shape

>> (84991, 11)
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Notice that the Software category is ubiquitous in all samples. That is why the code outputs the same 
number of samples. Nevertheless, keep this step in mind if you need to filter the dataset in your tests.

Exploiting the ratings of products

Another helpful piece of information is review/score, a rating measure for a product. Next, we 
explore the scores and calculate their frequency:

# Get the rating distribution.

x = df_software['review/score'].value_counts()

x = x.sort_index()

Based on the previous calculations, we create a plot:

# Create the plot.

ax = sns.barplot(x=x.index, y=x.values, alpha=0.8)

The result is the bar plot shown in Figure 4.4:

Figure 4.4 – Number of items having a rating between one to five

According to the screenshot, there are more ratings in the two extremes (1.0 and 5.0). This observation 
indicates that people tend to score a product when they are particularly satisfied or unsatisfied with 
the item.
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Next, we extract the scores for six random products:

# Get the data for specific software.

df_software_sub = df_software.loc[

    (df_software['product/title'].str.match(r'Documents To Go 
Premium Edition')) |

    (df_software['product/title'].str.match(r'TOPO! National 
Geographic.* York')) |

    (df_software['product/title'].str.match(r'Pajama Sam 2 
Thunder and Lightning')) |

    (df_software['product/title'].str.match(r'Instant Immersion 
French: "New')) |

    (df_software['product/title'].str.match(r'Encyclopedia 
Britannica 2000 Deluxe')) |

    (df_software['product/title'].str.match(r'Logos Bible 
Atlas')) |

    (df_software['product/title'].str.match(r'Instant Immersion 
German Platinum')) ]

# Reduce the name of the title.

df_software_sub['product/shorttitle'] = df_software_
sub['product/title'].str[0:12]

Creating a boxplot—also known as a box and whisker plot—is an elegant way to present condensed 
information about the data. It provides a visual five-number summary of the underlying data and is 
frequently encountered in EDA. For example, we can check whether the product scores are symmetric 
(roughly the same on each median side). In Figure 4.5, Q1 is the median value of the first half of the 
dataset, whereas Q3 is the median value of the second half:

Figure 4.5 – Analysis of a boxplot

We use the relevant data and create a plot, as follows:

# Create the plot.

ax = sns.boxplot(x='product/shorttitle', y='review/score', 
data=df_software_sub)
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The generated boxplot is presented in Figure 4.6:

Figure 4.6 – Review score for six software products

Based on Figure 4.6, only the Logos Bible and TOPO! Nation products have symmetric scores. 
Additionally, there are outliers for the Encyclopedia and Pajama Sam 2 cases. Outliers are data 
points significantly different from the other samples and may indicate some sort of abnormality. For 
example, an age field with a negative value is a sign of bad data and can distort the analysis. On the 
other hand, outliers can help detect anomalies in the data and find patterns that do not conform to the 
expected behavior. Examples are the detection of fraud, faults in safety-critical systems, or intrusion.

In the following section, the focus is on the actual review text.

Extracting the word count of reviews

The first statistic extracted from the text data is the number of words per review. The utility of such 
a calculation is to provide a general overview of the distribution of the reviews based on their word 
count. It can also help us define a cutoff threshold for the samples to be excluded from the subsequent 
analysis. The following code snippet shows the specific step and how to create a plot out of this data:

review_length = df_reviews['review/text'].apply(lambda col: 
len(col.split(' ')))

df_reviews['review_length'] = review_length

# Create the plot.

ax = sns.histplot(data=review_length)

plt.xlim(0, 400)



Performing exploratory data analysis 125

The output is the histogram shown in Figure 4.7:

Figure 4.7 – Number of reviews with a specific word count

As we can observe from the screenshot, most reviews have fewer than 100 words. Notice that we 
purposely limit the x axis to 400 words (plt.xlim(0, 400)), as the dataset contains instances 
with many more words. Let’s obtain some more insight into the data.

Exploiting the helpfulness score

The helpfulness score is the fraction of users who found one specific review helpful. There are many 
possibilities to exploit this score and other information during data exploration. For instance, it would 
be interesting to contrast the rating scores or helpfulness with the length of the reviews. Do users tend 
to write extensive reviews for products they like or those they don’t? Do customers find lengthy reviews 
more helpful than short ones? Is the feedback from the most active reviewers somehow helpful to other 
customers? This section tries to answer the last question, defining the most active (top) reviewers in 
terms of their review count (more than 50 items).

First, we extract the IDs of the specific users, like so:

# Get the number of reviews per user.

reviewers = df_reviews.groupby(by=['review/userId'], as_
index=False).count().sort_values(by=['product/productId'], 
ascending=False)

reviewers = reviewers[['review/userId', 'product/productId']]
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reviewers.columns = ['review/userId', 'review/count']

# Store the top reviewers.

top_reviewers = reviewers[reviewers['review/count'] >= 50]

top_reviewers = top_reviewers[['review/userId']]

print(top_reviewers)

>>    review/userId

68463    unknown

2896    A15S4XW3CRISZ5

53129    A5JLAU2ARJ0BO

Only three users adhere to the count criterion. The top one appears with an unknown ID, as it was 
impossible to associate certain reviews with a unique user. In this case, the relevant data cannot tell 
us much during the analysis of the top reviewers and should be removed. Next, we apply a second 
restriction and keep reviews with fewer than 400 words:

# Extract the data for top reviewers.

top_rev_help = pd.merge(top_reviewers, df_reviews, on='review/
userId', how='left')

top_rev_help = top_rev_help[top_rev_help['review/userId'] != 
'unknown']

top_rev_help = top_rev_help[top_rev_help['review_length'] < 
400]

top_rev_help = top_rev_help.sort_values(by=['review/score' ], 
ascending=False)

We also need to transform the review/helpscore field into a numerical value. Here’s how we 
can do this:

# Calculate helpfulness score.

top_rev_help['review/helpscore'] = top_rev_help['review/
helpfulness'].str.replace('/0', '/1')

top_rev_help['review/helpscore'] = top_rev_help['review/ 
helpscore'].fillna(1000).apply(pd.eval)

# Format the data.

top_rev_help['reviewers'] = 'top'

top_rev_help = top_rev_help.sort_values(by=['review/score' ], 
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ascending=False)

top_rev_help = top_rev_help.reset_index(drop=True)

Finally, we generate a relational plot that shows the helpfulness score for each product for the top 
reviewers:

# Create the plot.

ax = sns.relplot(x=top_rev_help.index, y="review/helpscore", 
hue="reviewers", size="review/score",

            sizes=(40, 400), alpha=.5, palette="muted",

            height=6, aspect=8/6, data=top_rev_help)

Figure 4.8 shows the output:

Figure 4.8 – Helpfulness score for the products of the top reviewers

A general remark from the plot is that the top reviewers’ feedback seems, in the end, helpful to other 
customers. Most bubbles lie on the upper part of the plot, where helpfulness has high values. Moreover, 
there are more positive review scores than negative ones, as fewer bubbles have a size equal to 1.0 or 
2.0. But how do these outcomes contrast with those of users with minimal reviews?

In the following code snippet, we repeat a similar procedure for users that have only one review:

# Store the bottom reviewers.

bottom_reviewers = reviewers[reviewers['review/count'] == 1]
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bottom_reviewers = bottom_reviewers[['review/userId']]

# Keep 1000 random bottom reviewers.

bottom_reviewers = bottom_reviewers.sample(130, random_
state=123)

Again, the results are restricted according to the 400 words threshold:

# Extract the data for bottom reviewers.

bottom_rev_help = pd.merge(bottom_reviewers, df_reviews, 
on='review/userId', how='left')

bottom_rev_help = bottom_rev_help[bottom_rev_help['review_
length'] < 400]

bottom_rev_help = bottom_rev_help.sort_values(by=['review/
score'], ascending=False)

As before, we transform the review/helpscore field into a numerical value:

# Calculate helpfulness score.

bottom_rev_help['review/helpscore'] = bottom_rev_help['review/
helpscore'].str.replace('/0', '/1')

bottom_rev_help['review/helpscore'] = bottom_rev_help['review/
helpscore'].fillna(1000).apply(pd.eval)

# Format the data.

bottom_rev_help['reviewers'] = 'bottom'

bottom_rev_help = bottom_rev_help.sort_values(by=['review/
score'], ascending=False)

bottom_rev_help = bottom_rev_help.reset_index(drop=True)

Next, we create a similar bubble plot:

# Create the plot.

ax = sns.relplot(x=bottom_rev_help.index, y="review/helpscore", 
hue="reviewers", size="review/score",

            sizes=(40, 400), alpha=.5, palette="hls",

            height=6, aspect=8/6, data=bottom_rev_help)

The output is presented in Figure 4.9:
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Figure 4.9 – Helpfulness score for the products of the bottom reviewers

Contrasting the two bubble plots, we observe more reviews with low helpfulness in Figure 4.9. A large 
proportion exhibits a score equal to 0.0. Additionally, there are more negative reviews (bubbles with a 
size of either 1.0 or 2.0). Both results suggest that evaluations from top reviewers with positive scores 
increase the review helpfulness for a given product. Notice, however, that comparing two quantities 
and finding an association doesn’t necessarily imply a cause-and-effect relation. We will discuss this 
topic extensively in the next chapter.

Next, we create elaborate graphs and examine the two top reviewers individually based on their 
helpfulness scores. But first, we need to restructure the data in a suitable format:

# Unpivot the dataframe from wide to long format.

stripplot_df = pd.melt(top_rev_help[['review/userId', 'review/
helpscore']], "review/userId", var_name="m")

Afterward, we create a plot with the scores:

# Create the plots.

f, ax = plt.subplots()

# Create a plot to show the helpfulness score per reviewer.

sns.stripplot(x="value", y="m", hue="review/userId",

              data=stripplot_df, dodge=True,

              alpha=.6, zorder=1)
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We also include the mean values of helpfulness:

# Show the conditional means of the scores.

sns.pointplot(x="value", y="m", hue="review/userId",

              data= stripplot_df, dodge=.8 - .8 / 3,

              join=False, palette="dark",

              markers="d", scale=1, ci=None)

The output is shown in Figure 4.10:

Figure 4.10 – Helpfulness score for the two top reviewers

Both reviewers receive high scores for their product evaluations. We often balance cumulative and 
individual statistics during the exploratory phase to better understand the data.

This section provided a deeper understanding of the Amazon reviews dataset for software products. 
This task permits using the data efficiently later in the chapter. You also reinforced your arsenal in 
analyzing and visualizing the input data, and you are now better equipped to perform a similar task 
for other datasets.

In the subsequent sections, we introduce the techniques to perform sentiment analysis.
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Introducing linear regression
Before we delve into solving the main problem of this chapter, we need to provide the necessary 
theoretical framework. This section presents an ML technique purposely chosen to unfold the discussion 
and facilitate understanding of the methods that follow.

Let’s consider the three plots in Figure 4.11 that show the relationship between two variables: x and y. 
In this example, the opaque and transparent points correspond in one of two independent datasets:

Figure 4.11 – Variables with deterministic (A), statistical (B), and random relationship (C)

In Figure 4.11 (A), the points of both datasets reside on their line, which defines a clear deterministic 
relationship between the two variables. As x changes its value, we can precisely calculate the value of 
y using one of the line equations. In the middle plot, we cannot predict the exact value of y, but we 
can obtain a good approximation based again on the line equations. Finally, in Figure 4.11 (C), the 
relationship is random, and we cannot find any function to infer y based on the values of x. In ML 
problems, we are often interested in identifying relationships such as in the left and middle plots to 
predict unseen observations. Conversely, the situation in the right plot is undesirable.

One of the most well-known algorithms to elicit the best relationship between an independent variable 
x and a dependent variable y is linear regression. In the case of a single independent variable, the 
method is referred to as simple linear regression, and for multiple ones, it is called multiple linear 
regression. The core idea is to obtain a regression line that best fits the data, exhibiting the lowest 
prediction error for all data points. The slope 𝛽𝛽1  and the point of intercept 𝛽𝛽0  with the y axis are the 
two coefficients that uniquely define the line. For a given dataset, the aim is to estimate these two 
coefficients to extract the line of best fit. The most popular method for this task is ordinary least 
squares (OLS), which we explain with an example.

Look at Figure 4.12, which includes a series of data points and their distance from a candidate 
regression line:
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Figure 4.12 – Principal of least squares

As the line cannot pass through all the points simultaneously, we require that it predicts the y value 
with the minimum error. We can quantify this error by examining the difference between the observed 
value 𝑦𝑦𝑖𝑖  and the predicted value 𝑦̂𝑦𝑖𝑖 . Consequently, the error for each point i (also called residuals) 
is defined as follows:

We seek to minimize this quantity for all data points, and the OLS method helps in this direction. 
Summing all the residuals should tell us which line yields the minimum prediction error. But there is 
a caveat. We use their squared version to avoid positive and negative prediction errors canceling each 
other out when summed. The following equation formalizes the loss function (where 𝑛𝑛 =  number 
of data points):

Loss functions intuitively inform us about some cost associated with a decision. For example, the cost 
increases when the regression line doesn’t fit the data well. Different functions can be incorporated 
to represent loss, and the one introduced previously is known as the principle of least squares. A 
numerical example helps us understand how it works.

Table 4.1 includes 10 observations for which we want to find the line of best fit. The data comes from 
a survey that reports the state of global happiness for 155 countries, named the World Happiness 
Report (https://www.kaggle.com/unsdsn/world-happiness). The independent 
variable represents the GDP per capita value for each country, and the dependent variable is the 
corresponding Happiness score value:

𝑒𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖 

𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠 =∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2 =
𝑛𝑛

𝑖𝑖
∑(𝑦𝑦𝑖𝑖 − (𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖))

2
𝑛𝑛

𝑖𝑖
 

https://www.kaggle.com/unsdsn/world-happiness
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Table 4.1 – Comparing two candidate regression lines for the happiness versus GDP dataset

Suppose that the two equations in the table define two candidate regression lines. Which one would 
you trust more for making future predictions about a country’s happiness level? Based on the previous 
discussion, the answer is the one that yields the minimum sum of the squares. This requirement 
corresponds to option B with a sum equal to 3.288673; we choose it as the best regression line for this 
minuscule dataset. Finally, notice that the sum of positive and negative prediction errors cancels each 
other when summed (0.009). The specific outcome clarifies why we need to square these quantities 
before their summation.

According to the equation of the principle of least squares, we need to estimate the values of the 𝛽𝛽0  and 
𝛽𝛽1  coefficients that make the sum of the squared prediction errors the smallest possible. In practice, 
we cannot test an infinite number of pairs to extract this information, and even if we examine a large 
number, it is not sure that we can elicit the best combination of the coefficients. Problems of this kind 
are typical in mathematics and are called optimization problems; we seek the best solution from all 
feasible solutions. A common way to attack this situation is to use calculus to obtain the coefficients 
that minimize the value of the loss function. Let’s see how.
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The left plot of Figure 4.13 shows the tangent lines at the three points A, B, and C of function f. It 
is a no-brainer to decipher that the minimum point of the function is B. There is also something 
interesting happening there; the slope a of the tangent line is equal to zero. At point C, the slope 
increases, whereas at point A, it decreases:

Figure 4.13 – Derivative of a function in three points A, B, and C

How can we exploit the changes in the slope of the tangent lines? Hopefully, calculus can assist us! 
The derivative of a function at a given point informs us about the rate of change of one variable with 
respect to another variable. For that reason, the derivative is equal to the slope of the tangent at this 
specific point. Finding the minimum value of a function translates into detecting where its derivative 
becomes zero.

Applying the same reasoning for the loss function, we have to zero its derivative and estimate the 
values of 𝛽𝛽0  and 𝛽𝛽1 . We also use partial derivatives as two coefficients must be considered. Initially, 
we focus on the partial derivative of the Loss function with respect to 𝛽𝛽1 :

Setting this equal to 0 and dividing both sides with the number -2, we get the following:

We now repeat the same process for the partial derivative with respect to 𝛽𝛽0 :

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽1

= 𝜕𝜕∑ (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖

𝜕𝜕𝛽𝛽1
=∑[2(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1𝑥𝑥𝑖𝑖)(−𝑥𝑥𝑖𝑖)

𝑛𝑛

1
] 

∑𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 −∑𝛽𝛽0𝑥𝑥𝑖𝑖
𝑛𝑛

1
−∑𝛽𝛽1𝑥𝑥𝑖𝑖2

𝑛𝑛

1
= 0 ⇒

𝑛𝑛

1
∑𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 − 𝛽𝛽0∑𝑥𝑥𝑖𝑖

𝑛𝑛

1
− 𝛽𝛽1∑𝑥𝑥𝑖𝑖2

𝑛𝑛

1
= 0

𝑛𝑛

1
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Setting again this equal to 0 and dividing both sides with the number -2 gives us this:

After executing a few algebraic steps, we end up with the two equations that allow the calculation of 
the two parameters:

In any dataset, the values of 𝑥𝑥𝑖𝑖  and 𝑦𝑦𝑖𝑖  are known in advance, so it is straightforward to calculate both 
coefficients and extract the line of best fit. In the next section, we implement linear regression in Python.

Putting linear regression into action

We use all 155 observations from the World Happiness Report dataset and implement the code to load 
and format the samples:

from sklearn.linear_model import LinearRegression

# Read the data from the csv file.

data = pd.read_csv('./data/2019.csv')

# Keep these two categories.

x = data['GDP per capita']

y = data['Score']

# Reshape the data.

x = x.values.reshape(-1,1)

y = y.values.reshape(-1,1)

Next, we create a model and acquire the predictions:

# Create and fit the linear regression model.

lmodel = LinearRegression()

lmodel.fit(x, y)

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽0

= 𝜕𝜕∑ (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖

𝜕𝜕𝛽𝛽0
=∑[2(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1𝑥𝑥𝑖𝑖)(−1)

𝑛𝑛

1
] 

∑𝑦𝑦𝑖𝑖 −∑𝛽𝛽0
𝑛𝑛

1
−∑𝛽𝛽1𝑥𝑥𝑖𝑖

𝑛𝑛

1
= 0 ⇒

𝑛𝑛

1
∑𝑦𝑦𝑖𝑖 − 𝛽𝛽0𝑛𝑛 − 𝛽𝛽1∑𝑥𝑥𝑖𝑖

𝑛𝑛

1
= 0

𝑛𝑛

1
 

𝛽𝛽0 =
∑ 𝑦𝑦𝑖𝑖 − 𝛽𝛽1 ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

1
𝑛𝑛
1

𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽1 =
𝑛𝑛∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − ∑ 𝑦𝑦𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

1
𝑛𝑛
1

𝑛𝑛
1

𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
1 − (∑ 𝑥𝑥𝑖𝑖𝑛𝑛

1 )2  
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# Get the predictions.

predictions = lmodel.predict(x)

Finally, we reformat the data to generate a regression line plot:

# Create a dataframe with the data.

linear_df = pd.DataFrame(data, columns=['GDP per capita', 
'Score'])

linear_df['Predictions'] = predictions

# Create the plot.

sns.scatterplot(data=linear_df, x='GDP per capita', y='Score')

sns.lineplot(data=linear_df, x="GDP per capita", 
y="Predictions", color='red', linewidth=4)

The output is presented in Figure 4.14:

Figure 4.14 – Regression line for the happiness versus GDP dataset
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The regression line with a slope of 2.2181 and point of intercept with the y axis equal to 3.3993 can 
help us predict the future. It mainly suggests that the more GDP per capita available, the higher the 
happiness score of a country. What a result!

The discussion in this section focused on one of the most frequently used techniques in ML. Even 
though it was not incorporated into the main problem of this chapter, it offers valuable insight into the 
content that follows. In particular, the utility of loss functions is a recurring topic in ML, and hopefully, 
the discussion in this section helped in enhancing your theoretical skillset. The following section 
introduces another method that, due to its close name with linear regression, often causes confusion.

Introducing logistic regression
Linear regression is well suited when predicting the value of a continuous numerical variable. Based on 
the assumption that there is a linear relationship between the dependent and the independent variable, 
the method aims to find the line of best fit and use it for prediction. In this chapter, however, we are 
dealing with a classification problem, as we need to assign a sentiment label (positive or negative) to 
a piece of text. Consequently, this is a different problem because the dependent variable is categorical 
and not numerical.

This section applies a supervised learning algorithm called logistic regression, which is suitable for 
binary classification problems. Notice that there is also the multinomial logistic regression algorithm 
option for multiclass problems. Logistic regression is a parametric learning algorithm that outputs a 
probability that an input belongs to a particular class. Instead of fitting a straight line to the data, the 
effort is to fit an S-shaped curve called the sigmoid function, defined as follows:

Factor e is a numerical constant called Euler’s number, and x is the sum of independent variables 
weighted by their coefficients (𝛽𝛽𝑖𝑖 ). For example, when there are two predictors (independent) variables, 
we can write the sum as this:

The sigmoid function squeezes any real number in the interval (0, 1) that is essentially a range for 
probabilities. An input equal to 0 yields a probability equal to 0.5. Conversely, a value above or below 
0.5 classifies the sample in each of the two classes accordingly. Figure 4.15 presents a classification 
task using a sigmoid function:

𝑆𝑆(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑥𝑥 

𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 
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Figure 4.15 – Logistic regression model

As in the case of linear regression, the aim is to estimate the coefficients that reduce the difference 
between the observed and the predicted value. Formally, this difference can be expressed with a 
loss function such as the OLS we have seen before. However, this method is not suitable for logistic 
regression. This is because the form of the OLS loss function for logistic regression typically contains 
many local minima. Therefore, minimizing the loss based on zeroing the partial derivatives often fails 
to find the optimal solution. In the next section, we introduce an alternative technique to alleviate 
this restriction and examine it in detail.

Understanding gradient descent

ML algorithms aim to approximate the function that best fits the data. This task involves minimizing 
the error, cost, or loss function using optimization techniques that extract the minimum of this 
function. In this section, we introduce a relevant technique commonly encountered in many practical 
problems called gradient descent (gradient = slope and descent = move downward). The pseudocode 
of the algorithm is presented here:

REPEAT until we reach convergence

    FOR every coefficient b
i

           new_b
i
 ← previous_b

i
 - 𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝛽𝛽𝑖𝑖
 

The basic idea behind the algorithm is the iterative update of the coefficients to be estimated until we 
reach convergence (ideally reaching a global optimum). At every iteration, we calculate the partial 
derivative of the loss multiplied by the factor α, known as the learning rate. Then, the product is 
subtracted from the coefficients to adjust its value. When a single training sample is used in each 
iteration, the variant is called stochastic gradient descent (SGD). With SGD, we calculate the error and 
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update the model for each sample in the training set, which is computationally expensive. Therefore, 
using a smaller random subset of the training set in each iteration is preferable. This version is called 
mini-batch gradient descent (MGD) and splits the training dataset into small batches that consist 
of m out of N training samples. In a typical MGD technique, we must run through all the samples in 
the training set before updating the coefficients.

To intuitively comprehend this process, let us consider the example illustrated in Figure 4.16:

Figure 4.16 – Gradient descent finds the value of the coefficient associated with minimal loss

Suppose we are at either position 1 or 2 and want to reach the bottom of the specific curve (point with 
the left flag). How can we be sure that we are moving in the correct direction? This task is straightforward 
when one can see and plan ahead. Conversely, it is very challenging when blindfolded, and we do not 
see where this minimum exists. In this case, we need some guidance to perform each small step in 
the correct direction. Gradient descent can identify the slope of the terrain in our immediate vicinity 
and inform us how to perform the next step downward in the curve. This analogy helps understand 
optimization problems such as finding the logistic regression model’s coefficients that minimize 
prediction error.
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Figure 4.17 provides a numerical example for clarifying the mechanics behind gradient descent:

Figure 4.17 – Step calculation during gradient descent

Let’s assume that the tangent slope to the curve at point 1 equals -2. By multiplying this number with 
the learning rate α = 0.2, we obtain -0.4. This number contains two crucial pieces of information: the 
next step’s direction and magnitude. To understand direction, look again at the pseudocode presented 
earlier. When subtracting a negative number from the previous coefficient, it is equivalent to adding a 
positive number; this is the direction. The absolute value of 0.4 signifies the magnitude of the step. The 
step size at point 3 decreases as the slope is smaller compared to point 1. At point 5, the magnitude 
of the step is even smaller. Moving toward the bottom of the curve, it is sensible to take small steps to 
avoid overshooting the minimum. The process terminates when we reach convergence (slope = 0). 
Notice that descending the curve from the left side gives coefficients that increase their value at every 
step. The opposite reasoning applies if we descend the curve from the right side, starting at point 2.

Unfortunately, the previous solution is not ideal as we failed to find the global minimum (right flag). 
Depending on where we settle at the initial descent point, we may get stuck in a local valley. Gradient 
descent finds a minimum value (local or global) by taking steps from an initial random position. The 
way we initialize the model coefficients (starting points) may or may not lead to rest in the optimal 
position. It would have been better to start at the smiley face position in this example. Ideal problems are 
those where there is only one place where the slope is exactly zero, and the loss function converges—
these problems are called convex. However, it is more common for high-dimensional loss surfaces to 
settle in one of the many local minima.

Another tricky situation concerns the choice of the learning rate, which dictates how small or big the 
steps we take in every iteration. For example, consider the left plot of Figure 4.18:
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Figure 4.18 – Big (left) versus small (right) learning rate

Too large steps may inhibit the algorithm from reaching the minimum and bounce between the two 
sides of the curve. Conversely, small steps might take too long for the algorithm to converge (see the 
right plot of Figure 4.18). As a rule of thumb, we begin with values of about 0.01 or 0.001, and based 
on the performance during training (accuracy and time), we adapt the learning rate accordingly.

After providing an intuitive explanation behind gradient descent, we examine how to calculate the 
logistic regression coefficients in more detail. In the example that follows, we seek to extract the slope 
for a single example and a single coefficient 𝛽𝛽𝑖𝑖 , using the chain rule (https://en.wikipedia.
org/wiki/Chain_rule):

The derivative of the sigmoid function is this:

So, the loss equation can now be written as follows:

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑖𝑖

= 𝜕𝜕(𝑦𝑦 − 𝑦̂𝑦)2
𝜕𝜕𝛽𝛽𝑖𝑖

= 𝜕𝜕(𝑦𝑦 − 𝑆𝑆(𝑥𝑥))2

𝜕𝜕𝛽𝛽𝑖𝑖
= 2(𝑦𝑦 − 𝑆𝑆(𝑥𝑥))𝜕𝜕(𝑦𝑦 − 𝑆𝑆(𝑥𝑥))

𝜕𝜕𝛽𝛽𝑖𝑖
 

= −2(𝑦𝑦 − 𝑆𝑆(𝑥𝑥))𝜕𝜕𝜕𝜕
(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑖𝑖

= −2(𝑦𝑦 − 𝑆𝑆(𝑥𝑥))𝜕𝜕𝜕𝜕
(𝑥𝑥)
𝜕𝜕𝜕𝜕 𝑥𝑥𝑖𝑖 

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕 = −(1 + 𝑒𝑒−𝑥𝑥)′

(1 + 𝑒𝑒−𝑥𝑥)2 = 𝑒𝑒−𝑥𝑥
(1 + 𝑒𝑒−𝑥𝑥)2 =

1 − 1 + 𝑒𝑒−𝑥𝑥
(1 + 𝑒𝑒−𝑥𝑥)2 = − 1

(1 + 𝑒𝑒−𝑥𝑥)2 +
1 + 𝑒𝑒−𝑥𝑥

(1 + 𝑒𝑒−𝑥𝑥)2 

= − 1
(1 + 𝑒𝑒−𝑥𝑥)2 +

1
1 + 𝑒𝑒−𝑥𝑥 =

1
1 + 𝑒𝑒−𝑥𝑥 (1 −

1
1 + 𝑒𝑒−𝑥𝑥) = 𝑆𝑆(𝑥𝑥)(1 − 𝑆𝑆(𝑥𝑥)) 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑖𝑖

= −2(𝑦𝑦 − 𝑆𝑆(𝑥𝑥))𝑆𝑆(𝑥𝑥)(1 − 𝑆𝑆(𝑥𝑥))𝑥𝑥𝑖𝑖 

https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Chain_rule
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Based on the previous analysis, the update rule becomes this:

The number 2 just says that we have a learning rate twice as big and can be omitted. Let’s now apply 
the presented theory to a contrived numerical example.

Using logistic regression

Physicians use specific criteria to determine whether a breast tumor is benign or malignant. For example, 
Table 4.2 shows data for ten patients and three criteria: the tumor’s radius, texture, and compactness. 
Based on the values of these features, the tumor can be categorized accordingly:

Table 4.2 – Tumor categorization based on three features

We can now proceed with the estimation of the model’s coefficients. We start with the first sample in 
the dataset (y=0) and initialize the coefficients to 0. The logistic regression predicts the following value:

𝑛𝑛𝑛𝑛𝑤𝑤𝑏𝑏𝑖𝑖 ← 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑏𝑏𝑖𝑖 + 𝛼𝛼(𝑦𝑦 − 𝑆𝑆(𝑥𝑥))𝑆𝑆(𝑥𝑥)(1 − 𝑆𝑆(𝑥𝑥))𝑥𝑥𝑖𝑖 

𝑆𝑆(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑥𝑥 =

1
1 + 𝑒𝑒−(0+0∙2.362+0∙3.421+0∙1.181) = 0.5 
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We can now incorporate the update rule for estimating each coefficient using a learning rate equal to 
0.2. Notice that for 𝑏𝑏0 , we can assume that it always has 1 as the input value (𝑥𝑥0 ):

In the next iteration, we use the second sample and obtain the following results:

Similarly, we proceed with all the other samples in the dataset. Every iteration over the same data is called 
an epoch; in our simplistic example, we use 10 epochs in total. Using MGD, yield to the model update 
after each epoch. After the last iteration, the output of the training process is the model shown here:

Interestingly, the model correctly classifies all the input samples. So, for example, considering the last 
row of Table 4.2, we get the following outcome:

It’s about time to incorporate the method for the sentiment analysis dataset and perform classification. 
The first step in this process is to create training and test sets.

𝑏𝑏0 = 0 + 0.2 ∙ (0 − 0.5) ∙ 0.5 ∙ (1 − 0.5) ∙ 1 = −0.025 

𝑏𝑏1 = 0 + 0.2 ∙ (0 − 0.5) ∙ 0.5 ∙ (1 − 0.5) ∙ 2.362 = −0.059 

𝑏𝑏2 = 0 + 0.2 ∙ (0 − 0.5) ∙ 0.5 ∙ (1 − 0.5) ∙ 3.421 = −0.086 

𝑏𝑏3 = 0 + 0.2 ∙ (0 − 0.5) ∙ 0.5 ∙ (1 − 0.5) ∙ 1.181 = −0.03 

𝑆𝑆(𝑥𝑥) = 1
1 + 𝑒𝑒−(−0.025−0.059∙1.042−0.086∙2.552−0.03∙1.275) = 0.415 

𝑏𝑏0 = −0.025 + 0.2 ∙ (0 − 0.415) ∙ 0.415 ∙ (1 − 0.415) ∙ 1 = −0.045 

𝑏𝑏1 = −0.059 + 0.2 ∙ (0 − 0.415) ∙ 0.415 ∙ (1 − 0.415) ∙ 1.042 = −0.08 

𝑏𝑏2 = −0.086 + 0.2 ∙ (0 − 0.415) ∙ 0.415 ∙ (1 − 0.415) ∙ 2.552 = −0.137 

𝑏𝑏3 = −0.03 + 0.2 ∙ (0 − 0.415) ∙ 0.415 ∙ (1 − 0.415) ∙ 1.275 = −0.055 

𝑆𝑆(𝑥𝑥) = 1
1 + 𝑒𝑒−(−0.241−0.716∙𝑥𝑥1−0.901∙𝑥𝑥2−0.188∙𝑥𝑥3) 

𝑆𝑆(𝑥𝑥) = 1
1 + 𝑒𝑒−(−0.241−0.716∙2.996−0.901∙5.077−0.188∙1.231) = 0.053 ≈ 0 
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Creating training and test sets

Extracting a binary sentiment label for each sample in the dataset is based on the score assigned by 
the reviewer. Thus, in the following code snippet, we set all ratings with a score equal to or less than 
3 to signify a negative review. A value above 3 denotes the opposite:

# Keep only the review text and score.

df = df_software[['review/text', 'review/score']]

# Every rating below or equal to 3 is considered negative (0) 
and above 3 positive (1).

df['label'] = df['review/score'].apply(lambda x: 0 if x <= 
3  else 1)

df.head()

>>   review/text    review/score  label

0  I bought this so...    2.0    0

2  It clearly says ...    1.0    0

5  I gave this game...    5.0    1

7  I think this on ...    4.0    1

8  It is great, my ...    5.0    1

We also check the number of positive and negative samples:

# Count the number of samples for each label.

df.label.value_counts()

>>  1    47179

    0    37812

The output suggests that the chosen threshold provides a relatively balanced dataset, which was expected 
according to Figure 4.4. We can now proceed and vectorize the text of the reviews:

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.model_selection import train_test_split

# Get the training and test sets.

df_train, df_test = train_test_split(df, test_size=0.3, 
stratify=df['label'], random_state=123)

# Create the count vectorizer.
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vectorizer = CountVectorizer(binary=True)

# Fit on the training data and get the count vectors.

vectorizer.fit_transform(df_train['review/text'].values)

countvect_train = vectorizer.transform(df_train['review/text'].
values)

countvect_test = vectorizer.transform(df_test['review/text'].
values)

Next, we store the label for each training and test sample in two arrays:

# Get the class arrays.

train_class = df_train['label'].values

test_class = df_test['label'].values

As all datasets are now in place, we can proceed to the classification step.

Performing classification

The baseline performance allows us to benchmark the logistic regression model. We pick the category 
with the most training samples, corresponding to label 1:

from sklearn import metrics

from sklearn.linear_model import LogisticRegression

print("The baseline accuracy is: " + str(df[df.label == 
1].shape[0]/df.shape[0]))

>> The baseline accuracy is: 0.5551058347354426

Assigning label 1 to every sample from the dataset yields a baseline model that is correct 56% of the 
time. Next, we create, train, and evaluate the classifier:

# Create the classifier.

classifier = LogisticRegression(penalty='none', solver='lbfgs', 
max_iter=10000, random_state=123)

# Fit the classifier with the train data.

classifier.fit(countvect_train, train_class)

# Get the predicted classes.
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test_class_pred = classifier.predict(countvect_test)

# Calculate the accuracy on the test set.

metrics.accuracy_score(test_class, test_class_pred)

>> 0.7882971213428505

The obtained accuracy is around 79%, better than the baseline but still mediocre. We can try to calibrate 
the hyperparameter of the algorithm; for example, use another solver or increase max_iter. First, 
however, we put into action a more effective technique and take the opportunity to discuss a major topic 
in ML that adversely affects the performance of the algorithms. This is the theme of the next section.

Applying regularization

In Chapter 3, Classifying Topics of Newsgroup Posts, we introduced the Occam’s razor concept: between 
two competing explanations (models), the simplest one should be preferred. The reason is that complex 
models tend to overfit the data and do not generalize well. On the other hand, aiming for too simple 
models engenders the opposite outcome and may result in solutions that underfit the data. Let’s provide 
the theoretical context to understand this concept in more depth.

Suppose we perform an experiment acquiring 99% accuracy for the training set and 86% for the test 
one. What does this tell us? We created a model that learned the training data perfectly but didn’t do 
that well on unseen data. The 1% error on the training set is the model’s bias, whereas the difference 
with the error on the test set (14% - 1%) is the model’s variance. In this specific experiment, the 
classifier has high variance; consequently, the model is overfitting. Performing a second experiment 
yields an accuracy of 87% for the training set and 83% for the test set. This time, the classifier exhibits 
high bias, and we can say that the model is underfitting.

There are different strategies for addressing both situations. For instance, we can add more features or 
try alternative ML algorithms for underfitting. On the other hand, one possible remedy for overfitting 
is adding more data to alleviate a possible mismatch between the training and test instances. The 
population of the training observations is not representative enough, and the model struggles to make 
good inferences from unseen data.

So, let’s first check the performance on the training set:

# Get the predicted classes.

Test_class_pred = classifier.predict(countvect_train)

# Calculate the accuracy on the test set.

Metrics.accuracy_score(train_class, test_class_pred)

>> 0.9999663825996336
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The accuracy, in this case, is excellent, but its difference from the test set implies high variance 
(99% - 78% = 21%). To attack the problem of overfitting, we use regularization, which penalizes the 
complexity of a model. We already encountered this technique in the Adjusting the hyperparameters 
section of Chapter 2, Detecting Spam Emails. The C hyperparameter of the support vector machine 
(SVM) algorithm is actually a parameter for regularization.

So far, the minimization of the loss function has been the primary way of eliciting the best model on a 
given dataset. Using regularization, however, we also need to minimize a second factor: the complexity 
of the model. Thus, the minimization task becomes twofold:

Loss functions should already be familiar from the discussion in this chapter, so we need to define the 
second term. How can we quantify complexity in this case? A common approach is to penalize models 
with high-weight values. The assumption is that smaller values result in simpler models. The model 
overfits as the weights grow in size to handle the specifics of the training observations. One method 
of this kind is L2 regularization, which considers the sum of the squared weights of each model:

The larger the values of the weights, the higher the regularization penalty is. So, we can rewrite the 
minimization task as follows:

The loss and regularization terms are balanced by the 𝜆𝜆  hyperparameter that determines the severity 
of the penalty. Lower values of 𝜆𝜆  lead to more value fitting the data against the model’s simplicity. 
Applying L2 regularization (penalty='l2') is shown in the following code fragment:

# Create the classifier.

classifier = LogisticRegression(penalty='l2', C=1.0, 
solver='lbfgs', max_iter=10000, random_state=123)

# Fit the classifier with the train data.

classifier.fit(countvect_train, train_class)

# Get the predicted classes.

test_class_pred = classifier.predict(countvect_test)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 +𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑤𝑤12 + 𝑤𝑤22 +⋯+𝑤𝑤𝑛𝑛2 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝜆𝜆(𝑤𝑤1
2 +𝑤𝑤2

2 +⋯+𝑤𝑤𝑛𝑛
2)) 
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# Calculate the accuracy on the test set.

metrics.accuracy_score(test_class, test_class_pred)

>> 0.8524197976311868

Regularization worked favorably for the classification task, and the performance improved significantly. 
We can also adjust the C hyperparameter, which is the inverse of the regularization penalty. The value 
1.0 was chosen randomly, but we can calibrate C with the technique presented in the Performing 
cross-validation section of Chapter 3, Classifying Topics of Newsgroup Posts. Consider extending the 
code with this step!

This section dealt with one of the most known ML algorithms. As a result, we acquired a more profound 
understanding of how algorithms learn from data. After presenting the necessary theoretical framework, 
we applied the method for sentiment analysis. We also discussed the L2 regularization technique that 
combats overfitting by penalizing models that have large weights. The following section focuses on 
state-of-the-art architecture encompassing many of the ideas presented so far.

Introducing deep neural networks
Nature has always inspired mathematicians and engineers to devise appropriate algorithms, designs, 
and artifacts for any given problem. So incorporating solutions that have proven themselves over 
millennia seems like a good idea. We can refer to numerous examples such as bats’ echolocation that 
inspired human-made sonars, the high-speed trains that have a shape that resembles the elongated 
beak of kingfisher birds to prevent sonic booms, the flight of drones as a flock of birds to avoid 
collisions, and many more.

Throughout this chapter, we discussed many times how algorithms learn from data. What is more 
natural than to think that emulating the human brain and its functionalities can enhance artificial 
cognition? Exploiting the mode of operation of this astonishingly complex organ of the human nervous 
system might permit the creation of sophisticated algorithms in any domain. This section provides 
a gentle introduction to the topic and presents a bio-inspired architecture based on the fundamental 
functions of the human brain.

The elementary unit of the brain is known as a neuron, schematically illustrated in Figure 4.19:
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Figure 4.19 – Diagram of the components of a neuron (Source: https://en.wikipedia.

org/wiki/Biological_neuron_model#/media/File:Neuron3.png)

We can identify three main components inside a neuron: the dendrites, the soma, and the axon. Dendrites 
act as inputs to the neuron (see 𝑥𝑥1 − 𝑥𝑥𝑛𝑛 ), which come from other interconnected neurons. Then, 
they transfer each input (with a specific weight) to the soma, which works as a summation function. 
The axon receives the result, and once it reaches a specific electrical potential, it emits a signal pulse. 
Finally, the pulse is transferred to the terminals (see 𝑦𝑦1 − 𝑦𝑦𝑚𝑚 ) that are connected to other neurons. 
Nature creates complex meshes of interconnected nodes by stacking many of these fundamental 
components. A typical human brain has around 86 billion neurons connected on average to 7,000 other 
neurons. Compare this to the number of stars in our Milky Way galaxy, which astronomers estimate 
somewhere between 200 and 400 billion. It’s like everybody hosts a small galaxy inside their head!

While this knowledge is fascinating, it does beg the question: how can we apply it to create intelligent 
machines? Is it possible to replicate the functions of a biological neuron to construct an artificial 
brain? Unfortunately, no, for the moment. In practice, very few times are nature-inspired solutions 
applied unmodified. For example, the flying machines we use today hardly replicate the function of 
bird wings or digital cameras on how human eyes perceive optical stimuli. In the same sense, we use 
biological neurons as an inspiration to create artificial ones. The following section presents the steps 
to design an elementary unit to mimic aspects of a biological neuron.
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Understanding logic gates

One of the first courses in any computer science program involves understanding how computer 
circuits work. Recall from the Extracting word representations section from Chapter 2, Detecting Spam 
Emails, that computers can only process signals containing two voltage levels or states. Then, the binary 
system expresses every quantity as a sequence of 1s (high voltage) and 0s (low voltage). But how can 
we create more demanding calculations besides identifying the two voltage levels? The answer is by 
stacking elementary electronic components called logic gates. The different types of gates receive one 
or two inputs, while their output results from a rule. Every logic gate has its truth table that dictates 
the exact output for a given input. Let us examine the example of Figure 4.20, which includes two of 
the most fundamental logic gates named AND and OR:

Figure 4.20 – Understanding logic gates

In Figure 4.20 (A), the two gates receive two binary inputs and output a single binary value according 
to their truth tables. For example, when 𝑥𝑥1 = 1  and 𝑥𝑥2 = 0 , the AND gate gives 𝑦𝑦 = 0 , while the 
OR gate outputs 𝑦𝑦 = 1 . The right-side plot shows a network with multiple gates, a possible input 
stream (1, 1, 0, 1, 1, 0, 0, 0), and the corresponding output (0). Take a moment to go through each 
node and verify the operation using the truth tables. By connecting different numbers and types of 
gates, we can create complex networks and perform sophisticated calculations. Astonishingly, such a 
fundamental element is the building block of most modern computing devices.
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For decades, engineers’ main task has been to include more of these elements into a single processor or 
chip and devise novel architectures to utilize their function efficiently. How does this topology relate 
to the theme of the current chapter? The following section provides the answer, where we discuss a 
fundamental unit suitable for ML.

Understanding perceptrons

Building electronic circuits with logic gates yield the high-performing computers we use daily. However, 
using the same elementary blocks to construct an artificial brain seems insurmountable. We would 
need far more complex building units, and this section performs a small step in this direction. So, 
we present a fundamental element called a perceptron that has been available since the 1950s but 
started to get significant hype in recent years. As with the gates discussed earlier, a perceptron takes 
several binary inputs and emits a single binary output. There are a few subtle differences, however. 
Each input is multiplied by a weight coefficient and then added all together. The result is examined 
against a certain threshold, determining whether the preceptor emits 0 or 1. The plots of Figure 4.21 
reveal several of the characteristics of this unit:

Figure 4.21 – A perceptron with three binary inputs

Specifically, in Figure 4.21 (A), the perceptron receives the three inputs 1, 1, and 0 multiplied with 
the weights 7, 4, and 2, respectively. Their sum is more than 10 (threshold), and that is why we get 1 
at the output of the perceptron:

Figure 4.21 (B) provides a practical example of how to incorporate this building block. The decision 
to go surfing on one specific day depends on three criteria: wind, waves, and sun. These exhibit 
different importance, and for that reason, they are assigned different weights. Finally, the weighted 
sum is compared against the same threshold (10).

1 ∙ 7 + 1 ∙ 4 + 0 ∙ 2 = 11 > 10 
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We formalize this process in Figure 4.21 (C) and delineate it with the following formula:

Note that a perceptron can receive more than three inputs in the general case. Next, we introduce a 
new term called bias (b), which is defined as the negative of the threshold:

You can think of the bias of how easy it is to get output 1 from the perceptron. Notice that the term 
refers to something different from the same in the Applying regularization section. In general, biases are 
systematic errors in ML models due to incorrect assumptions in the ML process. For example, using 
data that is not sufficiently large or representative enough to teach algorithms is a case of sampling 
bias. In the perceptron case, the bias refers to the algorithm’s assumption for the trigger threshold of 
this unit. So, the previous formula now becomes this:

Contrary to the logic gates where nothing has to be learned—all decisions are based on the truth 
tables—for the perceptron case, we need to estimate (learn) the weights and the bias. As you might 
suspect, this optimization problem can be solved with gradient descent. First, we must define a loss 
function and then iteratively adjust the weights and the bias to minimize it. For the second step, we 
calculate the perceptron’s delta function that determines the change to be added or subtracted from 
the weights and the bias and adjust their values using the gradient descent update rule. As a result, 
the error is usually reduced in every iteration until an acceptable performance is reached.

Two sampling biases
There is an inherent problem when TV or radio shows solicit their audience to participate in 
online polls, especially on controversial issues. Responses are given by self-selected people who 
often have a firm opinion on the issue (voluntary response bias).

Bill Gates, Steve Jobs, and Mark Zuckerberg are famous university dropouts that became multi-
billionaires. So, it’s logical to think dropping out of university is a prerequisite to phenomenal 
success. However, this ignores the far more significant set of dropouts who never got anywhere 
(survivorship bias).

This section continued the discussion on the elementary blocks that assist in creating intelligent 
systems. A perceptron is an elegant conceptual abstraction to facilitate the discussion about artificial 
neurons, which is the topic of the next section.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖,
𝑛𝑛

𝑖𝑖=1
 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 {> 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 → 1

≤ 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 → 0  

𝑏𝑏 ≡ −𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏,
𝑛𝑛

𝑖𝑖=1
 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 {> 0 → 1

≤ 0 → 0  
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Understanding artificial neurons

An important limitation of a perceptron is that it receives and offers only binary values. In many kinds 
of problems, however, we would like to make predictions from inputs of continuous value, and for that 
reason, perceptrons experience limited practical utility. This section introduces another fundamental 
block called an artificial neuron, and its basic components are illustrated in Figure 4.22:

Figure 4.22 – Artificial neuron

The structure of an artificial neuron seems quite similar to one of the perceptron. The summation 
(Σ) of the weighted input is the same as before, but instead of comparing it with a fixed threshold, we 
pass it through the function f, like so:

Its output is a range of values that shows how much the artificial neuron is activated. In this way, 
the neurons enhance their expressive power and cease to work as on/off switches. Contrast this with 
the binary outcome of the perceptron that indicates whether it is triggered or not. Furthermore, 
artificial neurons can be activated at different levels, making them more similar to their biological 
counterparts. For this reason, f is known as the neuron’s activation function. Figure 4.23 shows four 
different options for these functions:

𝑓𝑓(∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑤𝑤0)
𝑛𝑛

𝑖𝑖=1
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Figure 4.23 – Different activation functions

Observe that all functions are non-linear, which, according to the theory, is beneficial for approximating 
arbitrarily complex functions such as the decision boundaries of an ML model. Adding non-linearities 
into a network of artificial neurons is one of the main advantages of the activation functions.

Let’s first consider the Step activation, which consists of two distinct levels. In this case, the neuron is 
not triggered if the weighted sum of the inputs is less than or equal to zero. Conversely, a sum greater 
than zero triggers the neuron. Notice that using the Step activation function yields a perceptron unit. 
On the other hand, the Sigmoid activation produces gradual changes in the output for inputs around 
zero. Contrast this to the Step function, where the change between the two levels is abrupt. The tanh 
option outputs both positive and negative values in a range between -1.0 to 1.0. Finally, the ReLU 
(Rectified Linear Units) presents a special non-linearity compared to the Sigmoid and tanh options. 
Specifically, it emits the input directly if it is positive; otherwise, the output is zero. There are many other 
options for an activation function; in practice, we need to experiment to find the most suitable choice.

Next, we discuss how to create networks of artificial neurons that can solve challenging ML problems.

Creating artificial neural networks

The real power of artificial neurons emerges when they are networked together to learn features from 
the data and inference from unseen instances. An artificial neural network (ANN) is a collection 
of connected nodes (artificial neurons) stacked in layers. For instance, looking at Figure 4.24, we can 
identify three types of layers—namely, the Input, Hidden, and Output layers:
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Figure 4.24 – A dense network of artificial neurons

The input layer receives data for the ANN, and its size is restricted by the number of features in each 
input sample. For example, if the network needs to learn from an embedding vector with 256 elements, 
the size of the input layer is 256.

The network includes a series of hidden layers, where the true values of their nodes are unknown and 
consequently hidden from the input data. They are the secret sauce of an ANN and provide its special 
power. Networks with many hidden layers are called deep neural networks (DNNs). In Figure 4.24, we 
omitted many of the connection lines for clarity. However, each neuron receives input from all neurons 
of the layer that precedes it. In this case, the fully connected layer is called a dense layer. The width of 
the lines signifies the strength of the connection, and it’s related to the weight coefficient of the neuron. 
The thicker the line, the higher the absolute value of the weight. The dotted lines signify a negative 
weight in the specific visualization, whereas the straight lines are associated with a positive weight. 
Beware that the number of layers, neurons, and the type of activation functions is a design choice.

Hidden layers implicitly capture information from the input data and extract relationships between 
the features. Intuitively, hidden layers at the beginning of the network capture low-level relationships, 
whereas the layers to the end elicit high-level ones. A typical example is an ANN for classifying a 
human face. The first hidden layer detects light and dark pixels, the second extracts simple forms from 
the image (such as lines), and the third identifies more complex shapes (such as an eye or nose, and so 
on). We return to this cascading architecture in Chapter 8, Detecting Hateful and Offensive Language.

The output layer is the final layer of the network and determines the result of the ANN processing. 
The number of neurons in the output is related to the problem under study. For example, classifying 
an observation into two categories requires two output nodes. One node positively identifies the 
sample in one category and the other negatively in the second category. An educative interactive 
demonstration to create and train your own ANN can be found at the following link: https://
playground.tensorflow.org/.

https://playground.tensorflow.org/
https://playground.tensorflow.org/
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Training artificial neural networks

Before concluding this section, we need to address the learning aspect of an ANN. As you probably 
guessed, this is yet another optimization problem where we must define and minimize a loss function. 
One possible option for this task is to use the gradient descent technique we learned previously. 
However, due to the special nature of an ANN, we need to go through multiple layers to adjust the 
parameters. For this reason, gradient descent is paired with another technique called backpropagation.

The training process consists of a forward and a backward pass. We feed an input sample to the ANN 
and calculate the error in the first pass. In the backward one, we carry the information about the error 
in the reverse order and adjust the weights and biases of the network. The forward-backward steps are 
repeated multiple times until the error becomes sufficiently small. Let’s consider the minimal neural 
network (NN) shown in Figure 4.25 and a numerical example to clarify things:

Figure 4.25 – A snapshot of a simplistic NN

The network consists of an input layer, a hidden layer, and an output layer, with two nodes each. The 
chosen activation function is the sigmoid one, and the values of the parameters are initialized according 
to the screenshot. The 0.3 and 0.2 inputs should produce 0.2 and 0.8 outputs.
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We begin with the forward pass and calculate the input to the neurons of the hidden layer, like so:

The output of the neurons is this:

We repeat the same step with the output layer:

Next, we calculate the errors for the two output nodes:

The total error of the forward pass is, therefore, this:

𝑖𝑖𝑖𝑖ℎ1 = 𝑤𝑤11𝑥𝑥1 + 𝑤𝑤12𝑥𝑥2 + 𝑏𝑏1 = 0.22 ∙ 0.3 + 0.1 ∙ 0.2 + 0.11 = 0.196 

𝑖𝑖𝑖𝑖ℎ2 = 𝑤𝑤13𝑥𝑥1 + 𝑤𝑤14𝑥𝑥2 + 𝑏𝑏1 = 0.17 ∙ 0.3 + 0.13 ∙ 0.2 + 0.11 = 0.187 

𝑜𝑜𝑜𝑜𝑜𝑜ℎ1 =
1

1 + 𝑒𝑒−𝑖𝑖𝑖𝑖ℎ1 =
1

1 + 𝑒𝑒−0.196 = 0.549 

𝑜𝑜𝑢𝑢𝑢𝑢ℎ2 =
1

1 + 𝑒𝑒−𝑖𝑖𝑖𝑖ℎ2 =
1

1 + 𝑒𝑒−0.187 = 0.547 

𝑖𝑖𝑖𝑖𝑦𝑦1 = 𝑤𝑤21𝑜𝑜𝑜𝑜𝑜𝑜ℎ1 + 𝑤𝑤22𝑜𝑜𝑜𝑜𝑜𝑜ℎ2 + 𝑏𝑏2 = 0.18 ∙ 0.549 + 0.2 ∙ 0.547 + 0.14 = 0.348 

𝑖𝑖𝑖𝑖𝑦𝑦2 = 𝑤𝑤23𝑜𝑜𝑜𝑜𝑜𝑜ℎ1 + 𝑤𝑤24𝑜𝑜𝑜𝑜𝑜𝑜ℎ2 + 𝑏𝑏2 = 0.16 ∙ 0.549 + 0.09 ∙ 0.547 + 0.14 = 0.277 

𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦1 =
1

1 + 𝑒𝑒−𝑖𝑖𝑖𝑖𝑦𝑦1 =
1

1 + 𝑒𝑒−0.348 = 0.586 

𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦2 =
1

1 + 𝑒𝑒−𝑖𝑖𝑖𝑖𝑦𝑦2 =
1

1 + 𝑒𝑒−0.277 = 0.569 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦1 =
1
2 ∙ (𝑦𝑦1 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦1)

2 = 1
2 ∙ (0.2 − 0.586)2 = 0.074 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦2 =
1
2 ∙ (𝑦𝑦2 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦2)

2 = 1
2 ∙ (0.8 − 0.569)2 = 0.027 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦1 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦2 = 0.101 
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Let’s now perform a backward pass and see how to update the model’s parameters. We focus on the 
weights and examine how their change affects the total error using the following partial derivatives 
and the chain rule:

Specifically, for 𝑤𝑤21 , we have to calculate the different partial derivatives of the relevant equation. So, 
the formula should look like this:

We already learned how to calculate the derivative of the sigmoid function in the Understanding 
gradient descent section. Plugging the partial derivatives of the error with respect to 𝑤𝑤21  gives us this:

We can now adjust the value of 𝑤𝑤21  to minimize the error using the gradient descent update rule:

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤21

= 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦1

∙
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦1
𝜕𝜕𝑖𝑖𝑖𝑖𝑦𝑦1

∙
𝜕𝜕𝑖𝑖𝑖𝑖𝑦𝑦1
𝜕𝜕𝑤𝑤21

 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤22

= 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦1

∙
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦1
𝜕𝜕𝑖𝑖𝑖𝑖𝑦𝑦1

∙
𝜕𝜕𝑖𝑖𝑖𝑖𝑦𝑦1
𝜕𝜕𝑤𝑤22

 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤23

= 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦2

∙
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦2
𝜕𝜕𝑖𝑖𝑖𝑖𝑦𝑦2

∙
𝜕𝜕𝑖𝑖𝑖𝑖𝑦𝑦2
𝜕𝜕𝑤𝑤23

 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤24

= 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦4

∙
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦2
𝜕𝜕𝑖𝑖𝑖𝑖𝑦𝑦2

∙
𝜕𝜕𝑖𝑖𝑖𝑖𝑦𝑦2
𝜕𝜕𝑤𝑤24

 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡𝑦𝑦1

= 2 ∙ 12 (𝑦𝑦1 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦1)
2−1 ∙ (−1) + 0 = −(0.2 − 0.586) = 0.386 

𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦1
𝜕𝜕𝑖𝑖𝑖𝑖𝑦𝑦1

= 𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦1 ∙ (1 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦1) = 0.586 ∙ (1 − 0.586) = 0.243 

𝜕𝜕𝑖𝑖𝑖𝑖𝑦𝑦1
𝜕𝜕𝑤𝑤21

= 1 ∙ 𝑜𝑜𝑜𝑜𝑜𝑜ℎ1 ∙ 𝑤𝑤21
1−1 + 0 + 0 = 𝑜𝑜𝑜𝑜𝑜𝑜ℎ1 = 0.549 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤21

= 0.386 ∙ 0.243 ∙ 0.549 = 0.051 

𝑛𝑛𝑒𝑒𝑤𝑤𝑤𝑤21 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑤𝑤21 − 𝛼𝛼 ∙ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑤𝑤21
= 0.18 − 0.05 ∙ 0.051 = 0.177 
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Notice that we used a learning rate equal to 0.05. In the same way, we can calculate the other weights, 
which differ slightly from their previous version:

We then move on to the next step of the backward pass for the hidden layer. For example, to update 
𝑤𝑤11 , we must now calculate the following quantity:

We do not present any further calculations here. Hopefully, you understood how the parameters are 
updated with backpropagation. At each epoch, the training set is fed to the forward pass. Then, a 
better estimation is obtained for the weights and biases in the backward one.

It is now time to apply the theory presented so far to the sentiment analysis problem of this chapter.

Performing classification

This exercise incorporates TensorFlow, an end-to-end open source platform for ML. We also use 
Keras, which is a high-level application programming interface (API) for TensorFlow. The created 
model consists of four hidden layers that include 256 neurons each. The following code snippet 
shows the specific configuration:

import tensorflow

tensorflow.random.set_seed(2)

from numpy.random import seed

seed(1)

from keras.layers import Dropout, Dense

from keras.models import Sequential

node_num = 256

layers_num = 4

dropout = 0.5

𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤22 = 0.197 

𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤23 = 0.158 

𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤24 = 0.088 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤11

= 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜ℎ1

∙ 𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜ℎ1𝜕𝜕𝑖𝑖𝑖𝑖ℎ1
∙ 𝜕𝜕𝑖𝑖𝑖𝑖ℎ1𝜕𝜕𝑤𝑤11
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There is also another hyperparameter that defines the dropout rate. Dropout is a regularization 
method that prevents the model from overfitting. During training time, it randomly sets the output 
edges of the hidden neuron to zero at each step. In our example, we use a dropout rate equal to 
0.5, suggesting that half of the output edges must be dropped randomly.

We can now proceed in the construction of the NNs following these steps:

1.	 First, we define the type of the model:

model = Sequential()

2.	 Next, we create an input layer:

model.add(Dense(node_num, input_dim=countvect_train.
shape[1], activation='relu'))

model.add(Dropout(dropout))

3.	 We can now create hidden layers:

for i in range(0, layers_num):

    model.add(Dense(node_num, input_dim=node_num, 
activation='relu'))

    model.add(Dropout(dropout))

4.	 Finally, we construct the output layer of the network:

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',

            optimizer='adam', metrics=['accuracy'])

One important remark concerns the size of the input layer, which is controlled by the size of the input 
samples. This constraint is specified with the countvect_train.shape[1] statement. Take a 
look also at the activation functions for the different layers. For example, the relu option is used for 
the input and hidden layers. Conversely, we use the sigmoid function for the output. During the 
inference phase, the sigmoid activation provides a score that helps decipher whether the sample 
includes a positive or negative sentiment.
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Before training the model, let’s print summary information about the network:

model.summary()

>> Model: "sequential"

___________________________________________________________

Layer (type)              Output Shape              Param #

===========================================================

dense (Dense)             (None, 256)              19297024

___________________________________________________________

dropout (Dropout)         (None, 256)               0

...

===========================================================

Total params: 19,560,449

Trainable params: 19,560,449

Non-trainable params: 0

___________________________________________________________

An interesting observation concerns the number of parameters that need to be estimated, around 20 
million. It is not uncommon to have many parameters in a DNN, and most commercial applications 
we use today have billions. We can also visualize the model as a graph using the following code:

from keras.utils.vis_utils import plot_model

# Plot the model.

plot_model(model, to_file='./images/model_plot.png', show_
shapes=True, show_layer_names=True, dpi=100)
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Figure 4.26 shows the output:

Figure 4.26 – Visualization of the model as a graph

Last, we can train the model for 10 epochs and use a batch_size value of 128 samples:

# Fit the classifier with the train data.

model.fit(countvect_train, train_class,

          validation_data=(countvect_train, train_class),

          epochs=10, batch_size=128, verbose=2)
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>> Epoch 1/10

465/465 - 25s - loss: 0.4078 - accuracy: 0.8135 - val_loss: 
0.2476 - val_accuracy: 0.9094

...

Epoch 10/10

465/465 - 36s - loss: 0.0500 - accuracy: 0.9839 - val_loss: 
0.0068 - val_accuracy: 0.9988

The accuracy quickly reaches 98%, and we can now perform the real benchmark using the test data. 
As the predictions stem from a sigmoid function, we normalize them into two distinctive levels using 
the value 0.5 as a threshold:

# Get the predicted classes.

test_class_pred = model.predict(countvect_test)

# Normalize the predicted values to either 0 or 1.

test_class_pred = [(1 if i>0.5 else 0) for i in test_class_
pred]

# Calculate the accuracy on the test set.

metrics.accuracy_score(test_class, test_class_pred)

>> 0.8575574554867048

The model offers an accuracy of around 86%, close to the result obtained for the logistic regression 
case with regularization. However, as mentioned multiple times throughout the book, the solutions 
presented in the examples are indicative, and you are strongly urged to adjust the hyperparameters 
to obtain better performance.

This section concludes the discussion of the basics of DNNs. The content unfolded by presenting 
the different building blocks that perform elementary decisions. We started with logic gates and 
continued with perceptrons and artificial neurons. Finally, we saw how these units are combined 
to create complex networks. The real power of artificial neurons emerges when they are networked 
together. This topic is recurring in the subsequent chapters, as a vast number of state-of-art systems 
used today incorporate some architecture of this kind.
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Summary
We covered a lot of ground in this chapter. Focusing on the sentiment analysis problem using real-
world reviews from the Amazon online store, we became better acquainted with different algorithms 
and methods for supervised learning. Simultaneously, we broadened our coverage on how algorithms 
learn from data and how to incorporate optimization techniques for this task.

We worked on more advanced plots, starting with the EDA phase, and provided both cumulative and 
individual statistics for the reviewers. Additionally, we found an indirect way to assign a sentiment 
label to the data samples utilizing the reviewers’ ratings.

The discussion around logistic regression facilitated the introduction of avoiding overfitting using 
regularization. Then, we detailed how artificial neurons are networked together to form complex 
networks. Finally, both algorithms were used to classify the samples in the dataset and provided good 
performance. Up next, we have another problem to deal with: implementing recommender systems.



5
Recommending Music Titles

Consumer choices and how they can be influenced are critical factors for every business. For instance, 
most people are interested in specific music genres, have favorite authors, or engage in particular 
hobbies. This information can be extracted from their purchase history or product reviews, and when 
utilized correctly, it can drastically increase the company’s profit. A frequently cited case is the one 
million dollar prize awarded by Netflix in 2009 to a team that developed an algorithm that increased 
the accuracy of the company’s recommendation engine by 10%. In the end, as more user interactions 
occur on any online platform, more data is available for analysis, leading to superior customized 
recommendations.

This chapter seeks to exploit product and user data to create recommender systems for music titles. 
We will base the discussion on a corpus of customer reviews from the Amazon online store. First, we 
will perform exploratory data analysis to identify possible shortcomings in the samples and carry out 
an extensive data cleaning task. Next, we will introduce two flavors of recommenders that rely either 
on product reviews or user ratings. We will discuss their strengths and weaknesses and implement 
different variants to suggest music titles. The implementations will utilize dimensionality reduction 
techniques, and as the chapter unfolds, we will have the opportunity to introduce a new method for 
this task. Finally, we will revisit the topic of hyperparameter tuning and discuss a related technique.

By the end of the chapter, you will be able to adapt the described pipeline to your own projects and 
inclinations.

In this chapter, we will go through the following topics:

•	 Understanding essential concepts in statistics

•	 Examining more advanced dimensionality reduction techniques

•	 Identifying hidden relations between products and customers

•	 Learning methods to compute optimal values of hyperparameters

•	 Creating models using autoencoders
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Technical requirements
The chapter’s code has been truncated in certain parts to facilitate reading the content. However, the 
whole code is available as a Jupyter notebook in the book’s GitHub repository:

https://github.com/PacktPublishing/Machine-Learning-Techniques-for-
Text/tree/main/chapter-05

Understanding recommender systems
In an ever-growing digital world, customers are often overwhelmed by the choices available and need 
assistance finding what they want. It comes as no surprise that their habits and preferences are valuable 
assets to overcome this hurdle. Both assist in identifying user needs and permit companies to promote 
new products and services at the right time and place. Nonetheless, with most of the services being 
predominately online, having direct access to your customers is challenging. So, what is the solution?

Let’s consider a few standard user inputs to answer this question, such as the number of stars awarded in 
an Amazon book review. Ratings provide a quality measure for the items in any online store. Similarly, 
the view count of a YouTube video is an engagement metric that can be used to recommend the same 
video to others. The number of views is an implicit indicator while rating scores are explicit. In both 
cases, however, an automatic system can exploit this information and expose users to content they 
may not know or keep them engaged with a service for a prolonged time. We have all encountered 
similar functionality on different online platforms that suggest products to buy, news to watch, friends 
to connect with, jobs to apply to, or restaurants to eat at. These systems fall under the general category 
of recommender systems, which is the current chapter’s focus.

In general, recommender systems can be categorized into content-based and collaborative filtering 
types. The idea behind the first category is simple: create a model with the properties of the items 
already purchased by a customer and run this model on new items to identify those they are likely 
to buy. Generally, content-based systems become more accurate the more input a user provides. Let’s 
consider the example of Figure 5.1 and suppose that a customer purchases apples frequently:

Figure 5.1 – Proposing a new item based on the properties of a purchased one

https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-05
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-05
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The recommender algorithm suggests oranges to purchase based on the apple’s properties: Calories, 
Water percentage, Protein, Carbs, Sugar, Fiber, and Fat content. In the same way, a movie recommender 
can exploit certain information about a film, such as the actors, director, genre, and language, and, 
founded on these properties, provide suggestions.

A significant drawback of content-based recommenders is that they base their decision on items belonging 
to categories people already know they want. Referring solely to past purchase history creates a self-
referential loop in which clients are informed about items in their range of interest. Consequently, there 
is a lack of any element of surprise, such as I have never thought of this, but I think I like it! Providing 
serendipitous recommendations allows the exploration of new options; this is where collaborative 
filtering comes into play. Systems of this kind try to identify similarities between customers based on 
past behaviors and people with similar purchase habits can recommend products to each other. The 
benefit, in this case, is that customers are exposed to items in which they have never expressed any explicit 
interest. The task becomes even more interesting when there is a rating metric for each product, a feature 
commonly encountered in most e-commerce and similar online services. Figure 5.2 shows an example 
where an apple is suggested based on the individual and community item ratings:

Figure 5.2 – Proposing a new item based on individual and community ratings

This chapter will deal with how to implement different recommendation systems for music products. 
As in Chapter 4, Extracting Sentiments from Product Reviews, we will incorporate a reviews corpus from 
Amazon (https://snap.stanford.edu/data/web-Amazon-links.html) comprising 
around 6.4 million five-star product ratings for relevant items. However, we have narrowed the 
subsequent analysis down into a smaller subset to make it less resource-intensive. Still, you are more 
than welcome to experiment by applying the pipeline presented to the whole corpus.

https://snap.stanford.edu/data/web-Amazon-links.html
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To comprehend a large amount of data, we need a way to contextualize it. So, once more, we will begin 
with the exploratory data analysis. This time, however, a more intensive data cleaning phase will be 
performed by identifying possible restrictions in the data.

Let’s start!

Performing exploratory data analysis
The analysis begins by loading the data from the corpus. For this task, we will utilize the steps already 
presented in the Performing exploratory data analysis section of Chapter 4, Extracting Sentiments 
from Product Reviews. Therefore, refer to this same section to inspect the Python code for the 
readCategories, parseKeysValues, and readReviews methods that we will omit in this 
chapter. So, calling the first method, we extract 250000 samples from the dataset:

# Read the reviews from the data.

reviews = readReviews('./data/Music.txt.gz', 250000)

reviews.shape

>> (250000, 10)

Next, we will perform a couple of transformations on the data to facilitate the analysis:

# Rename the columns for convenience.

reviews.columns = ['productId', 'title', 'price', 'userId', 
'profileName', 'helpfulness', 'score', 'time', 'summary', 
'text']

# Make the scores float values.

reviews['score'] = reviews['score'].astype(float)

Let’s now examine the first five lines in the dataset:

reviews[['productId', 'userId', 'score', 'text']].head(5)

>>   productId  userId          score  text

0    B00002066I  unknown         5.0  I hope a lot of pe...

1    B00002066I  A2KLYVAS0MIBMQ  5.0  My lovely Pat has ...

2    B000058A81  A18C9SNLZWVBIE  5.0  We've come a long ...

3    B000058A81  A38QSOKE2DD8JD  5.0  Final fantasy fans...

4    B000058A81  AKZLIIH3AP4RU   5.0  This has got to be...
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The first observation is that one userId includes the unknown generic value assigned when the 
user cannot be identified. It’s therefore advisable to exclude instances with this value from the dataset 
to avoid skewing the results. If not, reviews from different customers will be grouped under the same 
userId. Next, we will dedicate a separate section to performing the necessary data cleaning, as there 
are a few other situations to contemplate.

Cleaning the data

The cleaning phase starts with the removal of samples, including the unknown identifier, according 
to the following code:

# Remove reviews for unknown profiles.

reviews = reviews[reviews['userId'] != 'unknown']

reviews.shape

>> (202111, 10)

The result suggests that a large portion of the samples included this generic identifier. However, this is 
not the only problem in the dataset. A small subset of the samples do not include a title for the product:

# Remove reviews with empty titles.

reviews = reviews[reviews['title'] != '']

reviews.shape

>> (202066, 10)

Next, we decide to keep only one review for a specific product and user:

reviews = reviews.drop_duplicates(subset=['productId', 
'userId'], keep='first')

reviews.shape

>> (197596, 10)

In the same sense, we will keep one review for a specific title and user:

reviews = reviews.drop_duplicates(subset=['title', 'userId'], 
keep='first')

reviews.shape

>> (188837, 10)
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Another annoying situation is when a product appears with more than one identifier. In this case, we 
will keep just one productId per item:

unique_ids = reviews[~reviews.duplicated(['productId', 
'title'])]

unique_ids = unique_ids.drop_duplicates(subset=['title'], 
keep='first')

reviews = reviews[reviews['productId'].isin(unique_
ids['productId'])]

reviews.shape

>> (178058, 10)

The filtering process reduced the initial set to 178058 instances, but our work is not finished yet. The 
names of several titles appear as slightly different versions, as the following example demonstrates:

reviews[reviews['title'].str.contains('Lonely Heart')].drop_
duplicates(subset=['title'], keep='first')

>>     productId  title

84481    B000I26XF6  Sgt. Pepper's Lonely Hearts Club Band

198901  B000MU2LJG  Sgt. Peppers Lonely Hearts Club Band

Including both titles in our dataset wouldn’t make sense – one option is to merge the reviews under a 
common name. Still, the most straightforward workaround is to only keep one of the multiple versions. 
For this task, we incorporate the Levenshtein distance to extract the similarity between the two titles. 
This is the topic of the following section.

Applying the Levenshtein distance

First, let’s discuss a few things about this important metric in natural language processing (NLP) for 
measuring text similarity. To get a basic understanding of the calculations, consider the example of 
Figure 5.3, which shows comparisons for three sets of homophones (words with the same pronunciation 
but different meanings):
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Figure 5.3 – The Levenshtein distance for different pairs of homophones

To calculate the distance, we need to count the minimum number of character edits to change one 
word to the other. For example, muscles can be transformed into mussels with a minimum of 3 
substitutions. For the waste and waist pair, we have to make one insertion and one deletion; thus, 
the distance equals 2. For the third pair, 1 deletion suffices. Mathematically, the Levenshtein distance 
between two strings, α and b, is given by the following equation:

Here, the following applies:

•	 |𝑥𝑥|  = length of the string 𝑥𝑥 

•	 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥)  = string 𝑥𝑥  except for its first character

•	 𝑥𝑥[0]  = first character of string 𝑥𝑥 

The first element in the min part of the equation corresponds to deletion, the second to insertion, and 
the third to substitution (all in string α).

Next, we apply the metric to the problem under study and construct the d_score method, which 
returns a similarity score:

import nltk

# Method for calculating the distance between two strings.

𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎, 𝑏𝑏) =

{
  
 

  
 |𝑎𝑎|                                                                         𝑖𝑖𝑖𝑖 |𝑏𝑏| = 0|𝑏𝑏|                                                                         𝑖𝑖𝑖𝑖 |𝑎𝑎| = 0
𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑎𝑎), 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑏𝑏))                                𝑖𝑖𝑖𝑖 𝑎𝑎[0] = 𝑏𝑏[0]

1 +𝑚𝑚𝑚𝑚𝑚𝑚{
𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑎𝑎), 𝑏𝑏)
𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎, 𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙(𝑏𝑏))

𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑎𝑎), 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑏𝑏))
                   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
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def d_score(s1, s2):

    score = nltk.edit_distance(s1, s2)

    if score == 0.0:

        score = 1.0

    else:

        score = 1 - (score / len(s1))

    return score

We can now extract the unique titles and create a dataframe to host similar ones:

# Extract the unique titles.

unique_titles = reviews['title'].unique()

similar_titles = pd.DataFrame(columns=['title1', 'title2', 
'distance'])

Then, we calculate the distance scores for all titles, keeping the most similar items:

# Iterate over all titles and calculate their distance from the 
other ones.

for idx, x in enumerate(unique_titles):

    for y in range(idx, len(unique_titles)):

        distance = d_score(x, unique_titles[y])

        if distance < 1 and distance > 0.8:

            similar_titles = similar_titles.append({'title1':x, 
'title2':unique_titles[y], 'distance': distance}, ignore_index 
= True)

Notice that we used an abstract threshold equal to 0.8 to determine whether any two samples are 
similar. Consequently, the process performs a good approximation for the similarity extraction task, 
but it’s less than perfect. It can filter out samples that are indeed unique and do not relate to any other 
title, but there’s a price that we have to pay. You are welcome to experiment with the specified threshold 
and find a better trade-off if you can.

Finally, we will store the output in a file to avoid repeating the same process:

# Save the result in a csv file.

similar_titles.to_csv("./data/similar_titles.csv", sep='\t')
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Based on the previous steps, we can now filter the titles in the dataset:

# Load music items with similar titles.

similar_titles = pd.read_csv("./data/similar_titles.csv", 
sep='\t')

# Remove similar titles from the dataset.

reviews = reviews[~reviews['title'].isin(similar_
titles['title2'])]

reviews.shape

>> (172160, 10)

So far, the cleaning phase yields 172160 observations, but there is still a final step to take.

Adding the genres

The dataset needs to be augmented with a category column using the merged variable extracted in 
the same way as in the Performing exploratory data analysis section of Chapter 4, Extracting Sentiments 
from Product Reviews:

# Add the category for each item.

reviews = pd.merge(reviews, merged, on='productId', how='left')

reviews[['productId', 'userId', 'score', 'text', 'category']].
head()

>>  productId  userId     score  text        category

0  B000020...  A2KLYV...  5.0    My love...  Music| Pop| Rock

1  B000058...  A18C9S...  5.0    We've c...  Music| Pop| S...

2  B000058...  A38QSO...  5.0    Final f...  Music| Pop| S...

3  B000058...  AKZLII...  5.0    This ha...  Music| Pop| S...

4  B000058...  A1FELZ...  5.0    I used ...  Music| Pop| S...

Notice that each item is labeled with multiple genre categories. This outcome is not surprising, as it’s 
not uncommon for music albums or songs to be tagged using more than one genre. However, there 
is a portion of the products that are not strictly music-oriented, as we can identify with the following 
code snippet:

# Check for non-specific music-oriented items.

reviews[~reviews['category'].str.startswith("Music")].head(1)
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>>...title      ...           category

196  Perfect Gentlemen [VHS]  Movies & TV| TV| Music| R&B

We decide to exclude these less relevant products:

# Keep the items that are specifically music-oriented.

reviews = reviews[reviews['category'].str.startswith("Music")]

reviews.shape

>> (162989, 11)

The data cleaning phase yields 162989 samples to work with. Unfortunately, most of the subsequent 
analysis would have been based on false assumptions if we had skipped the previous cleaning steps. 
Therefore, we will proceed to the next section with a cleaned-up dataset and can extract some insightful 
information from the samples.

Extracting information from the data

The first step is to obtain the number of unique products in the dataset, using their productId:

print("Number of music ids in the corpus: " + 
str(len(reviews['productId'].unique())))

>> Number of product ids in the corpus: 19453

A quick calculation reveals that each product is reviewed 32 times on average (162989/19453). 
Let’s now obtain the different product categories:

import re

# Extract the categories of the music items.

cat = ';'.join(reviews['category'])

cat = [item.lstrip() for item in re.split(';|\|', cat)]

categories = pd.DataFrame(cat, columns=['category'])

categories['category'].unique()

>> array(['Music', 'Pop', 'Rock', 'Soundtracks', 'Classical', 
'World Music', 'Dance & Electronic', 'New Age', 'Jazz', 
'Broadway & Vocalists', 'Country', 'Folk', 'Blues', 'Classic 
Rock', 'R&B', 'Alternative Rock', 'Latin Music', 'Rap & Hip-
Hop', 'Miscellaneous', 'Hard Rock & Metal', "Children's Music", 
'Christian', 'Gospel', 'Musical Instruments', 'Instrument 
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Accessories', 'General Accessories', 'Patio', 'Lawn & 
Garden', 'Pest Control', 'Tools & Home Improvement', 'Building 
Supplies', 'Building Materials', 'Doors', 'Garage Doors', 
'Openers & Parts', 'Hardware', 'Keyboard Accessories', 'Player 
Piano Accessories'], dtype=object)

Next, we remove Music from the categories and only keep the genres of the products:

# Keep only the genres of the items.

categories = categories[categories['category'] != "Music"]

We can now plot the number of products per genre category:

# Get the genres distribution and keep the top 8.

x = categories['category'].value_counts()

x = x.sort_values(ascending=False)

x = x.iloc[0:8]

# Plot the distribution.

pd.DataFrame(x).T.plot.barh(stacked=True,colormap='Paired', 
figsize=(10,2)).legend(bbox_to_anchor=(1.05, 1), 
fontsize='large')

The output is the horizontal bar plot in Figure 5.4:

Figure 5.4 – Number of products per genre category

A large quantity of the items is labeled Pop, followed by Rock and Alternative Rock. Plots 
like the one here help us identify underrepresented categories in the dataset. If this is the case, we 
can balance the categories by randomly removing samples from dominant categories or excluding 
those with too few instances.
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Another interesting piece of information is the distribution of the rating reviews:

# Create the distribution plot including kernel density 
estimation.

Sns.displot(data=reviews['score'], kde=True, bins=45, height=4, 
aspect=2)

Figure 5.5 shows the distribution plot:

Figure 5.5 – Distribution of the rating values

Based on a five-scale rating (1.0 – 5.0), the largest proportion of the scores falls on the right-
hand side of the x-axis – in this example, above or equal to the value of 3.0. Thus, there is a clear 
imbalance in the ratings toward positive scores, suggesting that users who decided to review an item 
most probably liked it.

Next, we extract rating scores for two random products:

# Calculate the count of reviews per each rating for the two 
items.

r_count_1 = reviews[reviews['productId']=="B0007NFL1I" 
].groupby('score')['score'].count()

r_count_2 = reviews[reviews['productId']=="B000I26XF6" 
].groupby('score')['score'].count()

Let’s combine the previous counts into a single dataframe:

# Create a dataframe from the data.

r_count = pd.concat([r_count_1.rename('The Massacre [Vinyl]'), 
r_count_2.rename('Sgt. Pepper\'s Lonely Hearts Club Band')], 
axis=1)
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r_count['rating'] = r_count.index

r_count = pd.melt(r_count, id_vars="rating")

The obtained statistics can assist in the visualization of the ratings and comparison of the two products:

# Create and show the plot.

g = sns.catplot(data=r_count, kind="bar", x="rating", 
y="value", hue="variable", ci="sd", palette="dark", alpha=.6, 
height=5, aspect=2)

The output is the categorical plot in Figure 5.6:

Figure 5.6 – Ratings of The Massacre versus Sgt. Pepper’s Lonely Hearts Club Band

Contrasting the two products reveals an asymmetry in their rating scores, as Sgt. Pepper's 
Lonely Hearts Club Band is perceived more positively than The Massacre [Vinyl]. 
The simplest recommendation algorithm can exploit this information and propose products with the 
most positive ratings; in this case, the Sgt. Pepper's Lonely Hearts Club Band album.

Descriptive statistics complement data visualizations and provide simple summaries of the observations 
and their measures. The analysis that follows focuses on the ratings of the products:

import numpy as np

# Calculate the number of ratings per product along with their 
mean value.

product_stats = reviews.groupby('productId').agg({'score': [np.
size, np.mean]})

# Half of the products (50%) have 2 ratings at most.

product_stats['score']['size'].describe()
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>>

count    19453.000000

mean         8.378605

std         34.877318

min          1.000000

25%          1.000000

50%          2.000000

75%          5.000000

max       1836.000000

Name: size, dtype: float64

According to the printed statistics, half of the items have less than two ratings. The specific result 
amends the calculation at the beginning of the section that each product is rated on average 32 times. 
The next step is to obtain the most highly rated products:

# Keep the unique product titles.

unique_titles = reviews[['productId', 'title', 'category']].
drop_duplicates(subset='title', keep='first')

Let’s keep those with more than 100 ratings and sort them in descending order:

# Focus on products with at least 100 ratings.

product_subset = product_stats['score']['size'] >= 100

# Filter and sort the products based on their rating size.

m = product_stats[product_subset].sort_values([('score', 
'size')], ascending=False)

product_ext_1 = unique_titles.set_index('productId').join(m).
sort_values(('score', 'size'), ascending=False).dropna()

We can now plot the 15 most popular items in terms of rating size:

# Plot the product titles with the most ratings.

sns.barplot(x=product_ext_1[:15][('score', 'size')], y = 
product_ext_1[:15]['title'], alpha=0.8)

The bar plot in Figure 5.7 presents this information:
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Figure 5.7 – Most popular products in terms of rating size

The term popular is somehow misleading, as the rating size doesn’t always imply high rating scores. 
For example, recall The Massacre [Vinyl]’s results in Figure 5.6 and compare them to its 
position in Figure 5.7. Let’s examine this relationship in more depth and investigate whether there is 
any mathematical basis for the most-rated movies having higher rating values. The focus is on two 
variables; namely, the number of ratings (m['size']) and the mean rating score (m['mean']) 
defined in the following code:

# Filter and sort the products based on their mean rating.

m_rating = product_stats[product_subset].sort_values([('score', 
'mean')], ascending=False)

product_ext_2 = unique_titles.set_index('productId').join(m_
rating).sort_values(('score', 'mean'), ascending=False).
dropna()

# Create a new dataframe with the two variables.

m = pd.DataFrame()

m['size'] = product_ext_1[('score', 'size')]

m['mean'] = product_ext_2[('score', 'mean')]

We are interested in examining the extent to which these two variables correlate using the Pearson 
correlation metric:

# Calculate the correlation between the two variables.

m.corr(method='pearson')

>>  size    mean
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size  1.000000  -0.067582

mean  -0.067582  1.000000

The calculated value equal to -0.067582 signifies that there is no linear correlation between the 
two variables, which we can also visualize using the following code:

# Show the joint plot for rating size and mean.

g = sns.jointplot(x='size', y='mean', kind='reg', data=m)

The output is the joint plot illustrated in Figure 5.8:

Figure 5.8 – Visualizing the correlation between product rating size and mean score

According to the plot, items with around 750 ratings have a mean score in the area of 4.5 points. The 
regression line shows the relationship between the two variables and its slope indicates how changes 
in the variable on the x-axis affect the variable on the y-axis. A slope further from zero suggests rapid 
changes, whereas a slope close to zero indicates the opposite. In our case, the slope is negative and 
not steep. A correlation of +1 or -1 means that all data points are included on the regression line. 
Otherwise, they are spread out, as in our example. Correlation is a measure of variation away from 
the regression line.

In conclusion, the slope and correlation are used for different reasons – they do not have the same value, 
but they share the same sign (in our case, both are negative). In this example, we do not encounter a 
correlation between the most-rated music items and high scores, as previously suggested. However, 
before we continue the analysis, let’s decipher the term correlation between two variables, as it’s a 
universal theme in data analytics.
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Understanding the Pearson correlation

The correlation between two changing portions (or variables) indicates how the change of the 
first variable affects the direction of change for the second one. A typical example is a correlation 
between height and weight. As height increases, weight tends to increase too, and we can say that 
these variables are positively correlated. A correlation coefficient, p, indicates both the direction and 
strength of this relation in statistics. A typical variant is the Pearson correlation, which receives values 
between +1 and −1. A value of +1 indicates a total positive linear correlation, whereas a value equal 
to  −1 signifies a total negative linear correlation. Finally, when p = 0, there is no linear correlation 
between the variables. Values between 0 and 0.3 (or -0.3 and 0) indicate a weak positive (or a weak 
negative) linear relationship, between 0.3 and 0.7 (or -0.7 and -0.3) indicate a moderately positive (or 
moderately negative) linear relationship, and values between 0.7 and 1.0 (or -1.0 and -0.7) indicate 
a strong positive (or strong negative) linear relationship. Notice that these values are guidelines and 
whether an association is strong or not also depends on the use case. Figure 5.9 shows a few examples:

Figure 5.9 – Examples of the correlation coefficient p between two variables

Important note
A common fallacy is that correlation implies causation. Although it might be accurate in 
certain situations, it is not always the case. For example, the geographical distribution of 
Covid-19 cases in the US strongly correlates with 5G coverage, focusing on major cities and 
metropolitan areas. Conspiracy theories suggest that 5G may be causing the pandemic despite 
the apparent explanation that extended 5G coverage and Covid-19 cases appear in areas of 
overpopulation, which are cities.

This discussion concludes the exploratory data analysis section of this chapter. We have seen once 
more how this process helps us understand the Music dataset and how to filter out incomplete or 
unrelated samples. Additionally, it has been a good exercise for implementing different plot types and 
using them to visualize the information from the dataset. We can now proceed to the core methods 
for creating various recommender systems.

Introducing content-based filtering
Systems based on content-based filtering exploit the properties of items to recommend new products 
with similar features. The statement that drives the central paradigm behind these recommenders 
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is show me items similar to the ones I liked in the past. What can be considered properties of an item 
is an open issue and it is up to the system developer to define a proper set. Sometimes, it is evident 
from the samples; otherwise, we have to improvise and experiment to elicit the proper features. A 
poorly chosen set can negatively impact the outcome; this is where an experienced data scientist can 
make a difference.

This book’s focus on text data drives our decision on the properties to implement in the recommender 
system. Thus, we create a bag of words for each music item containing its review text and genres. We 
call it metadata:

# Group all tags per product id.

product_tags = pd.DataFrame(reviews.groupby('productId')
['summary'].apply(lambda x: "%s" % ' '.join(x)))

# Include the tags in the product dataframe.

products = pd.merge(unique_titles, product_tags, 
on='productId', how='left')

# Create product metadata that consists of tags and genres.

products['genres'] = products['category'].str.replace('|',' ')

products['metadata'] = products[['summary', 'genres']].
apply(lambda x: ' '.join(x), axis = 1)

Let’s print a few samples:

products[['title', 'metadata']][50:55]

>>  title                    metadata

50  Hard Hard Traveling Man  Fantastic!! The Best !! ...

51  Memorial Album 7         A Great Cd filled with R...

52  Accesories- Rarities...  The Gathering hands out ...

53  Sweet Nothing            Australia's best-kept se...

54  The Formula              80's synth-rock for........

Finally, the data is appropriately formatted to proceed to the next step. Exploiting the metadata to 
identify item similarity is the simplest way to implement a content-based recommendation system. 
You are more than welcome to experiment with different mixtures of metadata – for example, adding 
the titles part. Other similar datasets include columns with information about the performing artists, 
release date, or record label, which can also be part of the metadata.

Let us now start the fun part and produce recommendations!
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Extracting music recommendations

To represent the text in metadata, we use tf-idf, as discussed in Chapter 2, Detecting Spam Emails, 
and reduce its dimensionality with the Singular Value Decomposition (SVD) method presented in 
Chapter 3, Classifying Topics of Newsgroup Posts. The latter reduces the size of the tf-idf matrix while 
preserving a similar structure among its columns. The output of SVD is latent vectors that try to 
capture the most variance within the original data frame. The word latent has a Latin root that means 
lay hidden. Latent representations encode the information in the data that we can later decode in 
the processing pipeline. Applying SVD on the count or tf-idf matrices is known as Latent Semantic 
Analysis (LSA). The vectorizer and dimensionality reduction algorithms are incorporated with specific 
values for their hyperparameters. These should not be chosen randomly and we will discuss a more 
systematic way of tuning their values in the Performing parameter tuning section later in this chapter.

For the time being, let’s begin with tf-idf vectorization:

from sklearn.decomposition import TruncatedSVD

from sklearn.feature_extraction.text import TfidfVectorizer

# Create the tf-idf vectorizer.

vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, stop_
words='english')

# Generate the tf-idf matrix for the dataset.

tfidf = vectorizer.fit_transform(products['metadata'])

# Create a dataframe from the matrix.

tfidf_data = pd.DataFrame(tfidf.toarray(), index=products.
index.tolist())

tfidf_data.shape

>> (19453, 14896)

Each of the 19453 unique products is represented with an array of 14896 values. Next, we apply 
SVD to reduce the column size using 200 components:

# Calculate 200 components for the tfidf dataframe.

svd = TruncatedSVD(n_components=200, algorithm='randomized', 
n_iter=5, random_state=123, tol=0.0)

# Calculate the latent matrix.
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latent = svd.fit_transform(tfidf_data)

# Create the latent dataframe.

latent_data = pd.DataFrame(latent, index=products['title'].
tolist())

latent_data.shape

>> (19453, 200)

A vector with 200 components now describes each of the 19453 products, all included in latent_
data. Then, we can recommend similar items for a music title based on the Euclidean distance, the 
Pearson correlation, or the cosine similarity between two vectors in the dataframe. As an example, 
we choose the Led Zeppelin [Vinyl] title from the famous group and incorporate the cosine 
similarity method discussed in the Using tf-idf encoding section of Chapter 2, Detecting Spam Emails:

from sklearn.metrics.pairwise import cosine_similarity

# Obtain the latent vector for a product.

led_zeppelin = np.array(latent_data.loc['Led Zeppelin 
[Vinyl]']).reshape(1, -1)

# Calculate the similarity of the product with the other ones.

similarity = cosine_similarity(latent_data, led_zeppelin).
reshape(-1)

# Create the dataframe from the array.

similarity_data = pd.DataFrame(similarity, index=latent_data.
index, columns=['measure'])

Using similarity_data, we obtain ten recommendations for the reference title:

# Obtain the 10 top recommendations.

recommend = similarity_data.sort_values('measure', 
ascending=False).head(11)

# Get the title and genre for the recommendations.

tg = products[products['title'].isin(recommend.index.tolist())]
[['title', 'category']]

# Join the information from the two dataframes.
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recommend = tg.set_index('title').join(recommend, how='left', 
lsuffix='_left', rsuffix='_right')

Finally, we will print the list of recommendations in descending order in terms of cosine similarity:

# Recommend 10 products.

recommend = recommend.sort_values('measure', ascending=False)

recommend[~recommend.index.duplicated(keep='first')]

>>

title          category                           measure

Led Zeppeli..  Classic Rock|Hard Rock&Metal|Rock  1.000000

In the Heat..  Classic Rock|Hard Rock&Metal|Po..  0.852006

Definitely...  Alternative Rock|Hard Rock&Meta..  0.851303

Tuesday Night  Rock                               0.840619

Garth Brooks   Country|Pop                        0.809610

Innoncence...  Rock                               0.808551

Ritchie Bla..  Rock                               0.806990

When Dream ..  Hard Rock&Metal|Pop|Rock           0.798694

Bon Jovi       Classic Rock|Hard Rock&Metal|Pop   0.781751

Legalize It    Pop|World Music                    0.775196

Iron Maiden    Alternative Rock|Hard Rock&...     0.760014

It’s reassuring that the most similar result (the first element in the output) is the Led Zeppelin 
[Vinyl] title. The system seems to work quite well, as many products are related to the reference 
item, whether in the Rock genre or another relevant variation. Then, we will repeat the previous 
process using the Mozart: Fantasias & Sonatas title as input:

# Obtain the latent vector for a product.

mozart = np.array(latent_data.loc['Mozart: Fantasias & 
Sonatas']).reshape(1, -1)

...

>>

title                            category     measure

Mozart: Fantasias & Sonatas      Classical    1.000000

Mozart- Harnoncourt: The Late .. Classical    0.987406

Symphonies 1-15 / Philharmonic.. Classical    0.987111

Schnabel Plays Mozart            Classical    0.984056

Romantic Moments Vol. 1: Mozart  Classical    0.981416

Zukerman Conducts Mozart         Classical    0.979731
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Mozart: Le Nozze di Figaro (..   Classical      0.979172

Mozart: Symphony No, 40 K 550..  Classical      0.974895

Mozart: Bastien und Bastienne    Classical|Pop  0.961341

Mozart: Flute Concertos Nos. ..  Classical      0.921402

Mozart: Violin Con. No. 1 in ..  Classical      0.920338

This time, the recommendation list only contains titles from the same composer, while the measure 
values are higher than in the previous example. The more products from the same artist appear in the 
dataset, the more candidate recommendations there are. In this example, it’s rather myopic to suggest 
the complete list of Mozart’s titles. In an actual application, we could skip a few titles containing the 
composer’s name to benefit elements with a lower measure score in the list.

This section dealt with implementing our first recommender using the techniques discussed in 
previous chapters. The analysis was item-oriented, utilizing different information about the music 
products. Still, it can also become user-oriented by considering metadata such as gender, age, and so 
on if such a piece of information is available in the dataset. We will continue in the next section with 
the presentation of the second family of recommender applications.

Introducing collaborative filtering
Collaborative filtering relies on mutual preferences, as it identifies items that a user might like based 
on how other similar users rated them. The central paradigm behind this approach is driven by the 
statement Show me the items people like me have chosen. I might find them interesting. There are two 
methods for implementing collaborative filtering systems: memory-based and model-based. In the 
first case, we utilize user rating data to compute the similarity between users or items. In the second 
case, models are developed incorporating machine learning (ML) algorithms to predict user ratings 
for unrated items. Let’s see both in more detail, starting with the memory-based approach.

Using memory-based collaborative recommenders

Before implementing the recommender, we need to sort out the data. One design choice is to utilize 
instances from reviewers who have made at least five evaluations. The reason is to exploit the most 
active users in the dataset, who are typically more trustworthy than occasional users. The following 
code shows this step:

# Keep reviewers with more than 5 reviews.

v = reviews['userId'].value_counts()

reviews = reviews[reviews['userId'].isin(v.index[v.gt(5)])]

reviews.shape

>> (29687, 11)
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With 29687 reviews at our disposal, we can extract the unique product IDs:

unique_products = reviews.drop_duplicates(subset=['productId'], 
keep='first')

The pivot table calculated in the following code snippet summarizes the rating of each product (row) 
and each user (column):

# Keep the ratings for the products of interest.

ratings = reviews[reviews['productId'].isin(unique_
products['productId'].tolist())]

ratings = ratings[['productId', 'userId', 'score']]

# Reshape data based on column values.

ratings_pivot = ratings.pivot(index=['productId'], 
columns='userId', values='score').fillna(0)

ratings_pivot

>> userId    A1020L7BWW9RAX  A103KNDW8GN92L  A103W7ZPKGOCC9..

productId

1889212032   0.0             0.0             0.0

9051861079   0.0             0.0             0.0

B000000305   0.0             0.0             0.0

...

8684 rows × 2191 columns

We observe that the pivot table has many zero values in it and is therefore sparse. Moreover, it contains 
ratings for 8684 products and 2191 reviewers.

Next, we will use the Pearson correlation to measure similarity among the 8684 products. Notice that 
the main diagonal of the table includes only ones, as it relates each product with itself:

# Calculate the correlation coefficients.

corr_coef = np.corrcoef(ratings_pivot)

pd.DataFrame(corr_coef)

>> 0          1          2          3          4...

0  1.000000   -0.000457  -0.000457  -0.000457  -0.000457

1  -0.000457  1.000000   -0.000457  -0.000457  -0.000457

2  -0.000457  -0.000457  1.000000   -0.000457  -0.000457

3  -0.000457  -0.000457  -0.000457  1.000000   -0.000457
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4  -0.000457  -0.000457  -0.000457  -0.000457  1.000000

...

We can now extract the correlation of the Led Zeppelin [Vinyl] title with the other ones and 
sort the output in descending order:

# Obtain the coefficients for a product.

led_zeppelin = corr_coef[list(unique_products['title']).
index('Led Zeppelin [Vinyl]')]

# Obtain the recommendations.

recommend = pd.DataFrame({'title': unique_products['title'].
tolist(),'category': unique_products['category'].tolist(), 
'measure': led_zeppelin})

recommend = recommend.sort_values(by=['measure'], ascending = 
False)

recommend.set_index('title')

Finally, let’s print ten recommendations:

recommend.head(11)

>>  title              category                   measure

Led Zeppelin [Vinyl]   Classic Rock|Hard Rock&..  1.000000

Symphony 0             Classical                  0.615228

Slaughter of the Soul  Pop|Rock                   0.615228

Native Sons            Alternative Rock|Pop|Rock  0.615228

Whammy! [Vinyl]        Alternative Rock|Pop|Rock  0.615228

Living Proof: Mgm..    Classic Rock|Country|Har.. 0.615228

Island [Vinyl]         New Age|Pop|Rock|World ..  0.615228

Structures             Alternative Rock|Dance&..  0.527255

Raisin Cain            Blues|Classic Rock|Hard..  0.492025

La bella dormente..    Classical                  0.480028

Sacred Arias           Classical|Miscellaneous... 0.434575

The list contains related Rock music products but lower measure scores than those in the Introducing 
content-based filtering section, so let’s see whether we can increase the scores by reducing the feature 
space’s size. It should be no surprise that we need to incorporate a dimensionality reduction technique 
once more. Working with sparse matrixes such as the previous pivot table poses unnecessary computation 
and memory waste. In the Introducing the random forest algorithm section of Chapter 3, Classifying 
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Topics of Newsgroup Posts, we mentioned that SVD works well with sparse matrices. So, in the next 
section, we will exploit this feature for the problem under study.

Applying SVD

Throughout the book, we often saw the value of reducing the parameters in ML problems using 
principal component analysis (PCA) or SVD. Specifically, a simplified model that works as well as 
a more complex one is always preferable. Continuing this line of discussion, let us apply SVD to the 
rating pivot table and obtain the latent vectors of the products:

# Calculate 200 components for the pivot table.

svd = TruncatedSVD(n_components=200, algorithm='randomized', 
n_iter=5, random_state=123, tol=0.0)

# Calculate the latent matrix.

latent = svd.fit_transform(ratings_pivot)

# Create the latent dataframe.

latent_data = pd.DataFrame(latent, index=unique_
products['title'].tolist())

latent_data.shape

>> (8684, 200)

Each of the 8684 unique products is now represented by a vector with 200 elements. Next, we 
calculate the distance between the reference product and all the others using cosine similarity to 
obtain candidate recommendations:

# Obtain the latent vector for a product.

led_zeppelin = np.array(latent_data.loc['Led Zeppelin 
[Vinyl]']).reshape(1, -1)

# Calculate the similarity of the product with the other ones.

similarity = cosine_similarity(latent_data, led_zeppelin).
reshape(-1)

# Create the dataframe from the array.

similarity_df = pd.DataFrame(similarity, index=latent_data.
index, columns=['measure'])



Recommending Music Titles190

# Obtain the 10 top recommendations.

recommend = similarity_df.sort_values('measure', 
ascending=False).head(11)

We also need to include the necessary metadata for the products:

# Get the title and genre for the recommendations.

tg = unique_products[unique_products['title'].isin(recommend.
index.tolist())][['title', 'category']]

# Join the information from the two dataframes.

recommend = tg.set_index('title').join(recommend, how='left', 
lsuffix='_left', rsuffix='_right')

Let’s now proceed to the recommendation of 10 music products:

# Recommend 10 products.

recommend.sort_values('measure', ascending=False)

>>

title                  category                   measure

Led Zeppelin [Vinyl]   Classic Rock|Hard Rock&..  1.000000

Symphony 0             Classical                  0.907534

Native Sons            Alternative Rock|Pop|Rock  0.907534

Slaughter of the Soul  Pop|Rock                   0.907534

Structures             Alternative Rock|Dance&..  0.907495

Joy of Christmas       Music                      0.891911

La bella dormente..    Classical                  0.885290

Tao of Mad Phat ..     Jazz|Pop|R&B               0.866656

Lotusland/Sleeping..   Classical                  0.863544

Genesis                Classic Rock|Pop|Rock      0.844771

Squirt Pt.1            Dance&Electronic|Pop..     0.843914

Again, the list of results seems to be along the right lines. Notice, however, that the values for the 
measure scores are now much higher. Once more, reducing the dimensions of the problem is beneficial 
to the outcome. Hence, it’s prime time to learn about another dimensionality reduction technique in 
the next section.
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Clustering handwritten text

Suppose you work at a regional post office and are assigned to sorting incoming and outgoing daily 
mail. In your job, it’s sufficient to examine the postal code of each piece of post and put it in the right 
bag that will be sent to the corresponding local post office. However, this task is laborious and error-
prone, and an automatic procedure would be more than welcome. In this section, we will briefly detour 
from the chapter’s main problem and present how to automate this task. In addition, the discussion 
facilitates the presentation of another dimensionality reduction technique used later in the chapter.

The optical recognition of the handwritten digits dataset  (https://archive.ics.uci.edu/
ml/datasets/Optical+Recognition+of+Handwritten+Digits) contains different 
images for 10 classes of digits (0 to 9). The samples have been size-normalized, centered in a fixed-size 
image, and made available through the scikit-learn library. We will use this dataset to learn about a 
model for clustering digits.

So, first, let’s load the samples:

from sklearn.datasets import load_digits

# Load the digits dataset.

digits = load_digits()

digits.data.shape

>> (1797, 64)

The dataset consisted of 1797 instances with 64 features each. The features are the pixel values of each 
sample 8 x 8 (= 64) image. Then, we organize this information in a convenient dataframe structure 
along with the target classes to facilitate the processing that follows in this section:

# Create unique ids for the 64 pixels of each image.

pixel_ids = [str(i) for i in range(digits.data.shape[1])]

# Create a dataframe from the data.

df = pd.DataFrame(digits.data, columns=pixel_ids)

df['target'] = digits.target

df['digit'] = df['target'].apply(lambda i: str(i))

We plot a few sample digits for each category to see what they look like:

# Plot 10 sample digit images.

plt.gray()

fig = plt.figure(figsize=(10, 10))

for i in range(0, 10):

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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    ax = fig.add_subplot(3, 5, i+1,

title="digit:"+str(df.loc[i, 'digit']) )

    ax.matshow(df.loc[i, pixel_ids].values.reshape((8, 8)).
astype(float))

The output is illustrated in Figure 5.10:

Figure 5.10 – 10 image samples of handwritten digits

A few images are challenging even for the human eye to decipher, so in the following two sections, 
we will discuss how dimensionality reduction can assist with this task.

Using PCA

We saw how PCA is used on linearly separable data in the Understanding principal component analysis 
section of Chapter 3, Classifying Topics of Newsgroup Posts. This technique reduces the dimensionality 
of highly correlated data, which is achieved by constructing a linear transformation to represent the 
original dataset with a new one (principal components). In simple terms, PCA is primarily geometric, 
looking for axes that explain as much data variance as possible. Of course, during the transformation, 
PCA is concerned with preserving the global structure of the data.

First, let us incorporate the familiar PCA method using three components:

from sklearn.decomposition import PCA

# Calculate 3 principal components.



Introducing collaborative filtering 193

pca = PCA(n_components=3)

pcaComponents = pca.fit_transform(df[pixel_ids].values)

df['PC1'] = pcaComponents[:, 0]

df['PC2'] = pcaComponents[:, 1]

df['PC3'] = pcaComponents[:, 2]

# Keep only 100 examples for demonstration.

df_sub = df[:100]

Visualizing the samples is done with the following code:

# Create the plot.

plt.figure(figsize=(14, 8))

p = sns.scatterplot(x="PC1", y="PC2", hue="target",

    palette=sns.color_palette("hls", 10),

    data=df_sub, legend="full")

# Include the digit label for each datapoint.

for i in range(0, len(df_sub.index)-1):

     p.text(df_sub['PC1'].iloc[i]+1.0, df_sub['PC2'].iloc[i],

df_sub['digit'].iloc[i], horizontalalignment='left', 
size='medium', color='black', weight='normal')

The output is the scatter plot in Figure 5.11:

Figure 5.11 – Digit clusters in the 2D PCA plot
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According to the plot, certain digit classes are separated quite well – for example, 0, 3, and 9 – but 
others are entirely mixed – for instance, 2, 5, and 7. Can another method do a better job for this task? 
The answer is given in the following section.

Using t-distributed Stochastic Neighbor Embedding

It’s about time to introduce another dimensionality reduction technique called t-distributed Stochastic 
Neighbor Embedding (t-SNE), which embeds data points from a higher dimensional space into a lower 
one. In technical terms, the method starts by converting the high-dimensional Euclidean distances 
between data points into conditional probabilities that represent similarities. Contrary to PCA, the 
aim is to preserve the neighborhood of each point as closely as possible – namely, its local structure. 
Presenting the actual mechanics of t-SNE is beyond the book’s scope and we will only refer to a couple 
of typical examples. Hopefully, they should provide some insight into this method.

Consider the data points in Figure 5.12 that create the spiral structure known as the Swiss roll (inspired 
by the rolled sponge cake filled with whipped cream, jam, or icing):

Figure 5.12 – Swiss roll data points

Each point belongs to a specific class (depicted with a different color) that can be clustered in a lower-
dimension space using PCA or t-SNE. Let’s examine the first option using either one or two principal 
components. The plots in Figure 5.13 illustrate the output in both cases:
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Figure 5.13 – PCA with two or one principal component

PCA is supposed to preserve the global structure of the data and the plot on the left verifies this 
expectation; the spiral form and each color’s position in the roll are well-preserved. However, applying 
PCA didn’t make us any wiser, and the method fails to identify the fact that a Swiss roll is essentially 
a band of data points that has been curved. Squashing the roll (as though you were stepping on it 
from above) causes the colored points to mix and produces the plot on the right. Technically, applying 
one-component PCA to the data brings the distant points closer (especially in the middle of the line). 
The Swiss roll is an example of the deficiency of PCA for non-linear manifold structures that have a 
geometric shape or surface, such as a sphere.

Note
A manifold is a mathematical object with a curved shape that appears flat locally. So, for example, 
walking on the surface of a manifold in 3D looks like walking on a flat plane. Likewise, the 
Earth’s surface can be considered a manifold for a person walking on it (locally). Conversely, 
shapes with spikes or edges do not strictly constitute a manifold; a cube is one example.

t-SNE, on the other hand, zooms in on each individual data point along with its neighborhood, aiming 
to find a lower-dimension manifold where the data lives. The method extracts clustered local groups 
of samples so that a dataset that comprises several manifolds at once becomes visually disentangled. 
Figure 5.14 shows the separation of the Swiss roll into multiple manifolds:
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Figure 5.14 – Manifold of the Swiss roll data points as a 2D representation with t-SNE

Why is the output in the previous plot better than that of the two-component PCA? For instance, 
suppose we want to implement a classifier that labels an example in one of the categories of the Swiss 
roll. Due to the spiral form of the output in the left-hand plot of Figure 5.13, it’s more challenging to find 
a linear classifier that generalizes well for this task. Conversely, for the t-SNE case, it’s straightforward 
to define an efficient linear classifier.

Coming back to the digit classification problem, we can apply t-SNE to the dataset using two components:

from sklearn.manifold import TSNE

# Calculate 2 tsne components.

tsne = TSNE(n_components=2, perplexity=40, n_iter=300, random_
state=123)

tsneEmbedded = tsne.fit_transform(df[pixel_ids].values)

df['tsne1'] = tsneEmbedded [:, 0]

df['tsne2'] = tsneEmbedded [:, 1]

Next, we will visualize the result of the method:

# Create the plot.

plt.figure(figsize=(12,8))
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sns.scatterplot(x="tsne1", y="tsne2", hue="target",

    palette=sns.color_palette("hls", 10),

    data=df, legend="full", alpha=0.8)

The output is the scatter plot shown in Figure 5.15:

Figure 5.15 – Manifold of handwritten digits as a 2D representation with t-SNE

Again, t-SNE does a better job, and the digit clusters are separated clearly. The drawback of t-SNE is 
that it is computationally expensive and we are limited to two or three components. To combine the 
benefits of reserving both the global and local data structure, it is not uncommon to apply PCA first 
and then t-SNE.

The following section will examine the effect of t-SNE on implementing a recommender.

Applying t-SNE

We will conclude our discussion of t-SNE by applying it to the problem of study for this chapter, as 
we did with SVD:

# Calculate 3 components for the pivot table.

tsne = TSNE(n_components=3, perplexity=5, random_state=123)
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# Calculate the latent matrix.

tsneEmbedded = tsne.fit_transform(ratings_pivot)

# Create the latent dataframe.

latent_data = pd.DataFrame(tsneEmbedded, index=unique_
products['title'].tolist())

latent_data.shape

>> (8684, 3)

Contrary to the digits example, the method incorporates three components (n_components=3). 
First, notice that the perplexity argument relates to the number of nearest neighbors (=5) used 
for manifold learning. As our dataset is relatively small, the chosen value for perplexity is also 
small. The code for obtaining the latent vectors, calculating the cosine similarity, and including the 
metadata, is the same as before and thus omitted.

We can now output a recommendation with 10 products:

# Recommend 10 products.

recommend.sort_values('measure', ascending=False)

>>

title                  category                   measure

Led Zeppelin [Vinyl]   Classic Rock|Hard Rock&..  1.000000

Island [Vinyl]         New Age|Pop|Rock|World M.. 0.999456

Whammy! [Vinyl]        Alternative Rock|Pop|Rock  0.999456

Living Proof: Mgm..    Classic Rock|Country|Har.. 0.999455

Sacred Arias           Classical|Miscellaneous|.. 0.998777

Shriner's Convention   Country|Miscellaneous      0.998502

20th Century Maste..   Christian|Classic Rock|C.. 0.998453

Killer In The Crow..   Alternative Rock|Pop|Rock  0.998453

I See Good Spirits..   Alternative Rock|Dance..   0.998453

Live at the Quick      Country|Jazz|Pop|Rock      0.998378

Sgt. Pepper's Lone..   Pop                        0.998377

The results are more Rock-oriented than those we have encountered before and with very high 
measure scores. This is great!

In our discussion on collaborative filtering recommenders, we worked on the memory-based variant 
using the pivot table, which summarizes each product’s rating and user. We also incorporated 
dimensionality reduction techniques to extract better recommendations in this process. If you have 
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followed the discussion, it shouldn’t be difficult to guess the next topic of this chapter. We need 
to delve into model-based collaborative systems and focus more on user preferences for making 
recommendations.

Using model-based collaborative systems

After our short detour on t-SNE, we can now steer to the main path of the chapter. The focus this 
time is on providing recommendations for specific users instead of specific items. This section will 
demonstrate model-based collaborative filtering, which aims to develop the necessary models to predict 
how a specific user would rate an item they have never encountered before. Consequently, items with 
a high predicted rating are candidate recommendations for the specific person.

We utilize the rating table from the previous sections and a technique known as matrix factorization 
that allows us to discover the latent features underlying the interactions between users and items. In 
the Using memory-based collaborative recommenders section, we already saw that the rating table is a 
sparse matrix, as a single user can’t possibly rate all the available products. For this reason, we imputed 
the missing data with zero and used truncated SVD to reduce its dimensionality. Next, we will revisit 
the SVD algorithm and decompose the original sparse matrix into two low-dimensional matrices with 
latent features and less sparsity. The specific implementation employs gradient descent to minimize 
the squared error of the predicted and actual ratings. The output of this process is a model that we 
can poll to recommend music items to a particular user.

The idea behind factorization is quite simple; express a quantity as a product of smaller ones, called 
factors. Consider, for example, the following quantities and their corresponding factors: 6 = 2 × 3 ,  
588 = 22 × 3 × 72,  𝑥𝑥2 + 4𝑥𝑥 + 3 = (𝑥𝑥 + 3)(𝑥𝑥 + 1) . The process can be extended so that an input 
matrix is expressed as a product of two rectangular matrices with smaller dimensions. Factorization is 
also used in cryptographic algorithms, such as Rivest-Shamir-Adleman (RSA), which predominately 
uses it to create ciphers.

Interesting fact
RSA is a public-key cryptosystem widely used for secure data transmission. It’s based on the 
multiplication of two large prime numbers and its security relies on the practical difficulty of 
factoring the product of these two numbers.

We apply the method to the user or item rating matrix, hereafter called 𝑅𝑅 . To formalize this process, let’s 
define 𝑈𝑈  and 𝐼𝐼  as the two factors so that their dot product yields the matrix 𝑅𝑅 , namely 𝑅𝑅 = 𝑈𝑈 ∙ 𝐼𝐼 . The first 
matrix 𝑈𝑈  can be considered the user matrix, where rows represent users and columns are latent factors. 
Similarly, the matrix 𝐼𝐼  can be seen as the item matrix, where rows represent latent factors and columns 
are the items.

Notice that to perform the dot product, the number of columns in 𝑈𝑈  should be the same as the number 
of rows in 𝐼𝐼 . To calculate 𝑈𝑈  and 𝐼𝐼,  we employ ML over SVD to find the values of the hyperparameters 
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that capture the most variance within the original matrix 𝑅𝑅 . The benefit of SVD is that it can approximate 
𝑅𝑅  with a much smaller latent space and generalize for the missing ratings. By the end of this process, 
the dot product of 𝑈𝑈  and 𝐼𝐼  should be a good approximation of 𝑅𝑅  – namely, 𝑅𝑅′  and its element provide 
a rating for a specific user or item combination.

For example, the rating r of user m for product 1 is equal to the following:

Here, m is the number of users, n is the number of items, and k is the number of latent factors – see 
Figure 5.16:

Figure 5.16 – Decomposition of the rating matrix

Let’s consider a numerical example that sheds light on the calculations. In Table 5.1, three users 
(U1 to U3) have rated three movies (M1 to M3), and there is one missing rating depicted with the 
question mark:

Table 5.1 – Movie ratings by three users

It should be evident that U3 is more similar to U2 than U1 regarding their preferences. What should 
U3’s rating of M3 be, then? Suppose that the latent space, in this case, consists of two latent factors, 
namely F1 and F2. The first could refer to whether Robert De Niro appears in the specific film and the 
second as to whether the movie is a psychological thriller or not. Notice that latent factors do not 
have such clear associations with people, objects, or concepts in practice. Based on these assumptions, 
we obtain the factorization shown in Figure 5.17 using the values from Table 5.1:

Figure 5.17 – Predicting U3’s rating for M3

𝑟𝑟𝑚𝑚1 = [𝑢𝑢𝑚𝑚1, ⋯ , 𝑢𝑢𝑚𝑚𝑚𝑚] ∙ [𝑖𝑖11, ⋯ , 𝑢𝑢𝑘𝑘1]𝑇𝑇 
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For U3, a score equal to 3 points is assigned to F1, while a score of 2 points is assigned to F2. As none 
of these factors apply to M3, the corresponding values in the matrix are both equal to zero. We can 
finally calculate the missing rating using the formula 3 × 0 + 2 × 0 = 0 .

Hopefully, you understood the reasoning behind the matrix factorization technique well. Still, before 
proceeding to its practical implementation, we must introduce one more important technique for 
automatically tuning ML algorithms.

Performing parameter tuning

We have seen in previous chapters that any ML algorithm can be tuned by adjusting the values of its 
hyperparameters. However, knowing beforehand which combination provides the best performance 
is hard until you test them all. For example, a matrix might have different factorizations and we need 
to experiment to find the right one. During the discussion in the Introducing the k-nearest neighbors 
algorithm section of Chapter 3, Classifying Topics of Newsgroup Posts, we saw how to find the best 
value of the k hyperparameter using cross-validation. Consider now the example of Figure 5.18 (A), 
which consists of a grid of points for two parameters:

Figure 5.18 – Grid of two parameters (A), manual search (B), and random search (C)

Each point contains a particular combination of the hyperparameter values for training the ML 
algorithm. However, as the grid grows, training with all possible combinations becomes non-trivial. 
Furthermore, ML algorithms typically utilize several hyperparameters. For instance, 5 hyperparameters 
with 3 possible values each require 3 × 3 × 3 × 3 × 3 = 243  different tests. Another option is to 
traverse the grid following a specific path and examine a subset of the points, as in Figure 5.18 (B). 
A better option, in this case, is choosing random points in the grid, which has been experimentally 
proven to be a good practice (Figure 5.18 (C)).

Fortunately, the surprise module (https://surprise.readthedocs.io/en/stable/
index.html) provides a technique that alleviates the burden of creating the grid manually. The 
technique is known as grid search and helps us quickly tune the SVD algorithm and calculate its latent 

https://surprise.readthedocs.io/en/stable/index.html
https://surprise.readthedocs.io/en/stable/index.html
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factors. Next, we will narrow the analysis to a subset of the data, as the process is resource-intensive, 
and define the grid Python dictionary with four hyperparameters, n_factors, n_epochs, 
lr_all, and reg_all:

from surprise import accuracy, Dataset, Reader, SVD

from surprise.model_selection import cross_validate

from surprise.model_selection import GridSearchCV, KFold

# Define a Reader for our custom dataset and load the data from 
the ratings.

reader = Reader(rating_scale=(1, 5))

# For efficiency load part of the dataset.

data = Dataset.load_from_df(ratings[['userId', 'productId', 
'score']][0:100000], reader)

# Create the grid with the hyperparameter values to test.

grid = {'n_factors':[180,200], 'n_epochs':[5,10], 'lr_
all':[0.002,0.005], 'reg_all':[0.4,0.6], 'random_state':[2]}

After creating a grid of possible values for the hyperparameters, we will perform an exhaustive search 
(2 × 2 × 2 × 2 = 16  combinations). Then, we will evaluate the average rmse and mae over a three-
fold cross-validation procedure (cv):

# Perform the grid search for SVD.

grid_search = GridSearchCV(SVD, grid, measures=['rmse', 'mae'], 
cv=KFold(3, random_state=2))

grid_search.fit(data)

algo = grid_search.best_estimator['rmse']

Notice that the measures argument in the GridSearchCV class corresponds to the cost function 
to minimize so that we can elicit the best combinations for the hyperparameters. In the example, we 
choose two options. First, the Root Mean Squared Error (RMSE), which is defined as the square root 
of the mean of the square of all of the errors given by the following equation:

Here, 𝑆𝑆𝑖𝑖  is the predicted 𝑖𝑖𝑡𝑡ℎ  value and 𝑂𝑂𝑖𝑖  is the 𝑖𝑖𝑡𝑡ℎ  observation. Ideally, this error should be equal 
to zero.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1𝑛𝑛∑(𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1
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Second, the Mean Absolute Error (MAE), which measures the average magnitude of the errors 
without considering their direction, given as follows:

One crucial difference between the RMSE and MAE is that the first penalizes large errors since they 
are squared before being averaged.

Once fit has been applied to the data, the best_estimator attribute returns an algorithm 
instance with the optimal set of parameters. These steps entail the matrix factorization part and the 
minimization of the RMSE for every product rating in the rating matrix. We can now print the best 
rmse score extracted by the grid search:

print("The best RMSE score: " + str(grid_search.best_
score['rmse']))

>> The best RMSE score: 0.9216964630324304

In this case, the optimal values of the hyperparameters are the following:

print("Hyperparameter values for the best RMSE score: " + 
str(grid_search.best_params['rmse']))

>> Parameters for the best RMSE score: {'n_factors': 180, 'n_
epochs': 10, 'lr_all': 0.005, 'reg_all': 0.4, 'random_state': 
2}

According to the output, the model with the lowest error for SVD has 180 latent factors. Next, we 
use this best model to calculate its accuracy using five-fold cross-validation:

# Report accuracy of the best algorithm using cross-validation.

cross_validate(algo, data, measures=['RMSE', 'MAE'], 
cv=KFold(5, random_state=2), verbose=True)

>> Evaluating RMSE, MAE of algorithm SVD on 5 split(s).

                  Fold 1  ...  Fold 5  Mean    Std

RMSE (testset)    0.9152  ...  0.9087  0.9139  0.0069

MAE (testset)     0.7024  ...  0.7032  0.7046  0.0052

Fit time          0.79    ...    0.77    0.77    0.01

Test time         0.03    ...    0.03    0.03    0.00

It’s now time to proceed with the implementation of the recommender.

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑|𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖|

𝑛𝑛

𝑖𝑖=1
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Training the recommendation model

After extracting the configuration of the best model, we can use the whole dataset and train a new one:

from surprise.model_selection import train_test_split

# Load the whole dataset.

data = Dataset.load_from_df(ratings[['userId', 'productId', 
'score']], reader)

# Sample random trainset and testset (30% of the data is used 
for testing).

trainset, testset = train_test_split(data, test_size=0.3, 
random_state=123)

# Use the SVD algorithm.

algo = SVD(n_factors=180, n_epochs=10, lr_all=0.005, reg_
all=0.4, random_state=123)

# Train the algorithm on the trainset, and predict ratings for 
the testset.

algo.fit(trainset)

predictions = algo.test(testset)

The process outputs a similar RMSE to that of the previous section:

# Compute the Root Mean Square Error.

accuracy.rmse(predictions)

>> RMSE: 0.9099

0.9098979396765616

With best model at our disposal, we can move to the next section and propose music titles to a 
reference user.

Extracting music recommendations

Let us randomly choose AJYSM99XWVT4O as our user, who, according to the following code snippet, 
has performed 33 reviews:

uid = "AJYSM99XWVT4O"
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# Find the products that the specific user has not rated.

rated = ratings[ratings['userId'] == uid]['productId'].tolist()

not_rated = unique_products[~unique_products['productId'].
isin(rated)]

len(rated)

>> 33

Using the best model from the previous section, we iterate over all available music titles and predict 
whether they should be suggested to this specific person. Notice that the predict method takes the 
user and the product IDs as arguments:

pred = []

# Iterate over all not rated products and predict whether they 
should be recommended.

for index, row in not_rated.iterrows():

    p = algo.predict(uid, row['productId'])

    pred.append((row['title'], p[3]))

# Create a dataframe from the predictions.

predictions = pd.DataFrame(pred, columns=['products', 
'measure'])

predictions.sort_values('measure', ascending=False, 
inplace=True)

predictions.set_index('products', inplace=True)

Next, we obtain 10 recommendations for the reference user:

# Obtain the 10 top recommendations.

recommend = predictions.head(10)

# Get the title and genre for the recommendations.

tg = unique_products[unique_products['title'].isin(recommend.
index.tolist())][['title', 'category']]

# Join the information from the two dataframes.

recommend = tg.set_index('title').join(recommend, how='left', 
lsuffix='_left', rsuffix='_right')
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As in all previous examples, we will print a list of the recommendations:

# Recommend 10 products.

recommend.sort_values('measure', ascending=False)

>>

title                  category                    measure

Jackie Wilson - 20..    Blues|Pop|R&B              4.931706

Shaft: Music From ..    Blues|Pop|R&B|Soundtracks  4.929420

Aja                     Rock                       4.918036

Velvet Underground      Alternative Rock|Pop Rock  4.905956

Me Against the World    Rap&Hip-Hop                4.897946

A Love Supreme          Jazz|Pop                   4.892095

Made in Japan [Vinyl]   Classic Rock|Hard Rock&..  4.881098

Fulfillingness          Classic Rock|Pop|R&B|Rock  4.865284

Kind of Blue            Music|Jazz                 4.862929

Pleasure to Kill        Hard Rock&Metal|Rock       4.859903

Hopefully, the output should persuade AJYSM99XWVT4O to buy one of the suggested titles! In the 
following section, we will continue our discussion by presenting another type of artificial neural 
network suitable for building model-based collaborative filtering systems.

Introducing autoencoders

In Chapter 4, Extracting Sentiments from Product Reviews, we encountered neural network architectures 
for the first time. This section will continue along this path and focus on learning about techniques 
that leverage neural networks. Specifically, we will present a family of feature extractor methods that 
are designed to identify inherent patterns in data. These fall under the family of autoencoders, which 
are neural networks that try to shape their structure so that a given input and output are the same. 
An autoencoder network consists of two connected networks, an Encoder and a Decoder part, as 
shown in Figure 5.19:

Figure 5.19 – The typical autoencoder architecture
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The encoder takes in the input and converts it into a smaller, more dense representation. The aim is to 
preserve as much pertinent information as possible and discard any irrelevant parts. Next, the decoder 
network uses the compressed encoding from the previous step to reconstruct the original input as 
accurately as possible. Autoencoders are used for dimensionality reduction and information retrieval. 
Newer, more sophisticated versions are incorporated for advanced tasks, such as image generation.

In its simplest form, an autoencoder architecture consists of a feed-forward neural network such as 
the one shown in Figure 5.20:

Figure 5.20 – A simple autoencoder architecture

The input and output layers have the same number of nodes connected through a hidden layer with 
fewer nodes. During training, the aim is to minimize the difference (reconstruction error) between 
the input 𝑋𝑋  and the output 𝑋𝑋′  using backpropagation.

You might wonder about the need to use fewer nodes for the hidden layer. To reconstruct the original 
input in the previous example, it seems more logical to use five nodes instead of three. However, 
doing so creates an excellent memorizer of the input but lacks generalization capability. As a result, 
the autoencoder becomes overfitted to the training data and works less well with an unseen input. 
Conversely, a hidden layer with fewer nodes acts as an information filter that only stores the gist of 
the training data. This architecture can provide a reasonable reconstruction of both the training and 
unseen data.

Now, please take a moment to think about why this approach helps us create product recommenders. 
The answer is given in the following section.
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Understanding Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are similar to autoencoders but are implemented differently. 
An autoencoder consists of three layers where the output nodes are connected back to the input ones. 
On the other hand, an RBM is shallow and uses a two-layer neural architecture. The first input layer 
is visible and the second is hidden. Additionally, its nodes make stochastic decisions based on some 
probability distribution to determine whether to transmit the input signal or not. Figure 5.21 shows 
the architecture of an RBM:

Figure 5.21 – The architecture of an RBM

However, what is probability distribution? Consider this question: if you had to bet on the sum of rolling 
two dice, what would that be ? Without too much thinking, the magic number is 7 simply because 
there are more combinations that get this sum than 12, for example. Figure 5.22 shows the probability 
distribution of this experiment:

Figure 5.22 – Distribution of the outcomes after rolling two dice
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The data creates a bell-shaped curve, known as the Gaussian or normal distribution, which is 
encountered in infinite everyday situations. For example, the height of a population, grades of students, 
and IQ scores follow the normal distribution. Note, of course, that there are many other probability 
distributions in statistics.

In the same sense, different versions of the RBM use different distributions to perform their stochastic 
decision, either for the visible or hidden units. The two most well-known types are the Bernoulli-
Bernoulli RBM and the Gaussian-Bernoulli RBM, which, as the names suggest, differ in terms of 
their visible units. In the first case, they are binary, whereas the visible units are continuous in the 
second case. For both types, the hidden units are binary. Notice that the Bernoulli distribution models 
a random experiment with only two outcomes: yes or no, success or failure, or true/false.

When working with a specific dataset, it assumes that its samples adequately represent the general 
population. If this is not the case, we can hardly make any predictions for unseen data. In technical 
terms, the probability distribution of the dataset should be very close to the one of the whole population 
that we want to model.

Equipped with a good understanding of the RMB, we will move on to the next section and put a 
Bernoulli RBM into action.

Putting a Bernoulli RBM into action

The scikit-learn module provides an easy way to train an RBM from the rating pivot table, as shown 
in the following code:

from sklearn.neural_network import BernoulliRBM

# Normalize the ratings and get the transpose dataframe.

rp = ratings_pivot.div(5.0)

rp = rp.reset_index(drop=True).T

# Create the Bernoulli RBM and fit it with data.

rbm = BernoulliRBM(n_components=100, learning_rate=0.01, n_
iter=20, random_state=123, batch_size=200, verbose=True)

rbm.fit(rp)

# Perform one Gibbs sampling step.

res = rbm.gibbs(np.array(rp))

>>

...

[BernoulliRBM] Iteration 19, pseudo-likelihood = -2793.37, time 
= 1.85s
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[BernoulliRBM] Iteration 20, pseudo-likelihood = -2713.01, time 
= 1.95s

The model is trained after 20 iterations, so let’s use it to determine whether a product should be 
recommended to a user (the same as before, AJYSM99XWVT4O):

# Keep track of whether a product should be recommended for a 
specific user.

unique_products['recommend'] = res[rp.index.get_loc(uid)]

unique_products[['title', 'category', 'recommend']].head()

>>  title                    category         recommend

3  Chrono Cross: Original..  Pop|Soundtracks  False

57  Vagrant Story: Origina.. Pop|Soundtracks  False

65  Roy Orbison: Authorize.. Pop|Rock         False

86  Bird Lives               Jazz             False

97  Hardest Pit in the Lit.. Pop|Rap&Hip-Hop  True

Next, we will filter out non-relevant recommendations:

# Keep the product to recommend.

recommend_products = unique_products[unique_products.
recommend==True]

print("Number of recommendations: {:d}".format(len(recommend_ 
products)))

>> Number of recommendations: 2240

In the end, we have 2240 possible results to output at our disposal. However, before doing so, we 
need to check how many of the 33 user-rated products appear in the filtered list:

# Keep their product id.

m_ids = (recommend_products.productId).tolist()

# Percentage of recommended products already rated.

print("{:.2f}".format(100*len(list(set(rated).intersection(m_
ids)))/len(rated)) + "%")

>> 27.27%
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The user has already rated almost one-third of the music items, so we need to exclude them from the 
possible recommendations:

# Recommend 10 products.

recommend_products[~recommend_products.productId.isin(rated)]
[['title', 'category']].head(10)

>>   title                             category

97   Hardest Pit in the Litter         Pop|Rap&Hip-Hop

137  Letters From Home                 Country|Pop

149  Fanfare for the Warriors [Vinyl]  Jazz|Pop

181  Songs of Courage                  Jazz

194  Hard Hard Traveling Man           Country

209  Chocolate                         Dance&Electronic|Po..

262  Ferenc Fricsay: A Life in Mus..   Classical|Dance&Ele..

267  Guerrilla Warfare                 Pop|Rap&Hip-Hop

370  Return Journey                    Country|Folk

476  Catch Without Arms                Alternative Rock|Ha..

The recommendations list is not comparable to those in the Extracting music recommendations section. 
Those items were sorted in descending order in terms of their measure score, with the most highly 
ranked appearing first. In the case of the RBM, the decision to recommend a product is binary, so we 
do not get any score in the output list.

After presenting and using an RBM, we can conclude our discussion of model-based collaborative 
filtering recommender systems. The aim was to create models that predict user ratings for unrated 
items. We can also hypothesize that the recommendations would have been more accurate if the 
dataset had been much larger. Notice that the only requirement is to change the code in the Performing 
exploratory data analysis section to read more samples during data loading, but this is an exercise for 
you to verify and test!

Summary
This chapter dealt with the topic of the recommender systems that are ubiquitous on our daily journeys 
online. Compared to the previous chapters, we didn’t perform any classification tasks; instead, we 
focused on the most noteworthy techniques in ML for implementing recommender systems. Utilizing 
a corpus of Amazon reviews, we tried to elicit customized suggestions for music titles.

To wrap up, in the first part of the chapter, we performed the necessary data cleaning to eliminate 
corrupted data that would affect the quality of the developed systems. Then, we manipulated the dataset 
to make it suitable for the analysis that followed. We also enhanced our arsenal of data visualization 
methods with new types of plots.
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In the second part, we attacked the problem by focusing on the properties of products or customer 
ratings. We then detailed the suitable methods for both cases and implemented various recommenders. 
Simultaneously, we broadened our coverage of dimensionality reduction techniques and learned how 
to tune the values of the hyperparameters efficiently. In the next chapter, we will present one of the 
hottest topics in NLP: machine translation.



6
Teaching Machines to Translate

The universal translator is a prominent yet imaginary device commonly encountered in many science 
fiction novels, films, and TV series. Star Trek, for example, long ago included the device in its screenplay 
to accommodate the unhindered translation of alien languages into the native language of the user. 
But unfortunately, a Star Trek-like device doesn’t exist yet, and the vision of a universal translator has 
not been realized. This shortcoming comes as no surprise, given human languages’ fluidity, inherent 
ambiguity, and flexibility. Nevertheless, the effort to teach machines to work as efficient translators is 
constant, with fascinating results in recent years.

This chapter seeks to present the different methods for machine translation and, at the same time, 
enhance your skillset with many standard techniques for NLP. The differences in the methods presented 
are an excellent opportunity to contrast the design philosophy of top-down and bottom-up approaches. 
In the first case, domain experts are required to create models replicating the data, whereas in the 
second, the data is derived from the model. This chapter’s content focuses on the evolution of machine 
translation systems over the years in terms of four main category types. Besides the many practical 
hints, there is a special focus on understanding complex architectures for sequence-to-sequence 
learning. Finally, we will present specific evaluation methods and metrics to assess the performance 
of relevant systems.

By the end of this chapter, you will be able to use many of the described generic techniques in similar 
or completely diverse projects and implement machine translation systems from scratch.

In this chapter, we will go through the following topics:

•	 Understanding machine translation

•	 Introducing rule-based  machine translation

•	 Introducing statistical  machine translation

•	 Introducing sequence-to-sequence learning

•	 Measuring translation performance
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Technical requirements
This chapter’s code has been truncated in certain parts for ease of reading. However, the entire code 
is available as a Jupyter notebook in this book’s GitHub repository: https://github.com/
PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/
chapter-06.

Understanding machine translation
A serious impediment to spreading new information, ideas, and knowledge is the language barriers 
imposed by the different languages spoken worldwide. Despite the cultural richness brought to our 
global heritage, they can pose significant hurdles to efficient human communication. This chapter 
focuses on machine translation (MT), which aims to alleviate these barriers. MT is the process of 
automatically converting a piece of text from a source into a target language without human intervention. 
This task is more than a modest goal and demands the synergy of various emerging fields to address 
the peculiarities of human language. For instance, with their inherent ambiguity and flexibility, you 
can expect multiple situations where more than one best translation exists. Despite many prominent 
MT systems appearing in recent years, the technology is not new. In the 50s, it was part of the first 
computing applications. Nevertheless, significant progress has been made lately with systems that 
achieve state-of-the-art results. Figure 6.1 presents the major milestones in the evolution of MT that 
we are going to explore throughout this chapter:

Figure 6.1 – Evolution of MT technologies

Before we start discussing these methods, let’s consider a useful representation that helps in identifying 
the basic steps of any MT system, called the Vauquois triangle (see Figure 6.2):

https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-06
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-06
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-06
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Figure 6.2 – The Vauquois triangle

This specific representation, introduced by French researcher B. Vauquois in 1968, acts as a roadmap 
for translating a source sentence into the correct target. At a high level, the MT algorithm needs to 
perform three distinct steps, shown schematically in the plots:

1.	 First, ascend the left-hand side of the triangle and create an internal representation of the source 
sentence (Source language analysis).

2.	 Then, traverse the triangle and transfer the source representation to the target one. The different 
levels inside the triangle signify different levels of analysis. For example, Syntactic analysis 
determines whether a sentence is well formed, while Semantic analysis analyzes its meaning 
and whether it makes sense.

3.	 Finally, descend to the right-hand side and generate the target sentence (Target 
language generation).

There is no single way to perform the previous steps, and we can follow multiple paths to reach a 
translation. Ascending too high means that the algorithm dedicates more effort to create a better 
source representation and, consequently, deeper transfer rules are required. On the other hand, moving 
directly from the source to the target sentence (bottom of the triangle) demands shallow transfer rules 
and little effort in constructing internal representations. Finally, at the extreme, reaching the peak of 
the triangle allows the representation of the source sentence in a universal language (Interlingua). In 
this case, we can proceed to the third step, bypassing the second one completely. If all these sound a 
little bit vague, don’t worry. Let’s build our own MT systems to demystify this process!
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Introducing rule-based machine translation
We will begin our journey of MT with the classical approach, known as rule-based machine translation 
(RBMT), which aims to exploit linguistic information about the source and target languages. RBMT 
techniques fall under the broad category of knowledge-based systems, which mainly aim to capture 
the knowledge of human experts to solve complex problems. For example, try to recall your first 
efforts in learning a foreign language. First, we had to find the correct translation of a sentence, which 
involved searching for it in a dictionary and mapping each word of the source sentence to a word 
in the target. Then, we had to make a few adjustments, such as finding the correct verb conjugation. 
Figure 6.3 illustrates this approach with an English sentence translated into French:

Figure 6.3 – A word-for-word mapping from the source (EN) to the target (FR) language

We can follow a similar approach and create word-for-word mapping rules for any other translation 
pair. A complete bilingual English-to-French dictionary would suffice for this task. However, basic 
knowledge of a second language suggests that a word-for-word translation rarely works in practice. 
Words can appear or disappear in the target language; they can be highly context-dependent, while 
word morphology (the components inside a word, such as its stem, suffix, and so on) is extremely 
important. For example, consider the word up, the 42nd most popular English word (https://
en.wikipedia.org/wiki/Most_common_words_in_English), which has 50 different 
meanings (https://en.wiktionary.org/wiki/up). The chances are 1 out of 50 (2%) of 
getting the correct translation of this polysemous word without its collocations (series of words or 
terms that co-occur – for example, came up). Therefore, it is necessary to analyze the complete sentence 
before proceeding to its translation. Also, the general context of the source text must be considered 
since different conditions apply, for example, when translating literature versus a technical document. 
For these reasons, the translation rules must be more sophisticated than simply mapping between 
dictionaries. Over several decades, the effort has been to craft rules that can achieve good translation 
quality in a particular domain. All rules are handwritten, thus we can immediately identify the source 
of a mistranslation. Rules offer the competitive advantage of total control and don’t require much data, 
making RBMT relevant even today.

The following sections explore the three main categories of RBMT systems. Their differences lie in 
the level at which they aim for a language-independent representation and the source language’s 
depth of analysis.

https://en.wikipedia.org/wiki/Most_common_words_in_English
https://en.wikipedia.org/wiki/Most_common_words_in_English
https://en.wiktionary.org/wiki/up
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Using direct machine translation

Let’s consider a more complex translation pair: Life is good (English) → La vie est belle (French). In 
this case, the number of words differs, so following a word-for-word approach won’t work. Instead, 
more complex rules are required while considering the source and target languages’ lexical, syntactic, 
and semantic levels. Here is where direct machine translation (DMT) comes into the scene. The 
rules are usually developed by linguists with the necessary knowledge of the languages involved. In 
their simplest form, the rules need to do a mapping between source and target words, as we saw in 
Figure 6.3. In the more general case, the source sentence is split into lexical units, and the effort is to 
find the correct units in the target language. These can be a single word, a part of a word, or a chain 
of words. Creating the internal representation of the source sentence is minimal, with or without 
morphological analysis or lemmatization, and the transfer rules are shallow. Next, we will discuss a 
more sophisticated type of RBMT method.

Using transfer-based machine translation

The first task in the Vauquois triangle focuses on analyzing the source sentence. Again, a relevant 
analogy is a task we all had to endure during our early language courses at school. One of the primary 
assignments was grammatically analyzing a sentence and locating the basic sentence units – for example, 
the subject, verb, and object. Similarly, transfer-based machine translation (TBMT) systems parse 
the source sentences to extract richer internal representations. In the following subsections, we will 
explore different methods to identify how words are combined to form constituents (linguistic parts 
of a larger sentence, phrase, or clause), how words relate to other words, and more.

Executing part-of-speech tagging

We will begin with a method that categorizes words in a piece of text with a particular tag, based on 
their definition and context, called part-of-speech (POS) tagging. Figure 6.4 shows the outcome of 
this process using a sample input phrase:

Figure 6.4 – Part-of-speech tagging example
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The source sentence, The sky is blue, is analyzed and placed in four POS tags, codified as determiner 
(DT), noun (NN), third-person singular present (VBZ), and adjective (JJ). Various software toolkits 
are available for this type of parsing, such as Stanford’s CoreNLP (https://corenlp.run/) and 
spaCy (https://spacy.io/). In this section, we will incorporate nltk to perform POS tagging 
while using the following code from the machine-translation.ipynb notebook:

import nltk

# Tokenize the input text.

text = nltk.word_tokenize("The sky is blue")

# Parse the input.

nltk.pos_tag(text)

>> [('The', 'DT'), ('sky', 'NN'), ('is', 'VBZ'), ('blue', 
'JJ')]

Notice that the output is the same as the one in Figure 6.4. POS tagging provides useful information 
about each word and facilitates translation. For example, the word damage can be either a verb or a 
noun. Identifying its POS tag in a sentence provides the correct context for its translation.

Creating context-free grammar

A more insightful representation is the parse tree, which provides information on how a word joins 
with the other words of the sentence. We can quickly build our parse tree in Python using nltk and 
context-free grammar (CFG). A CFG is a set of recursive rules used to parse or generate patterns of 
strings. For example, the following code creates a CFG (named analysis_grammar) that consists 
of six rules signified with the -> symbol:

# Create the grammar that consists of six rules.

# S:sentence, NP:noun phrase, DT:determiner, NN:noun,

# VBZ:verb in the third person singular, JJ:adjective.

analysis_grammar = nltk.CFG.fromstring("""

    S -> NP VBZ JJ

    NP -> DT NN

    DT -> 'The'

    NN -> 'sky'

    VBZ -> 'is'

    JJ -> 'blue'

    """)

https://corenlp.run/
https://spacy.io/
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S and NP are non-terminal rules (can be expanded further), while DT, NN, VBZ, and JJ are terminal. 
Next, we must parse the input phrase using the analysis grammar:

# Create the input.

input = ['The', 'sky', 'is', 'blue']

# Parse the input.

parser = nltk.ChartParser(analysis_grammar)

# Print the parse trees.

for tree in parser.parse(input):

    print(tree)

>> (S (NP (DT The) (NN sky)) (VBZ is) (JJ blue))

In this example, the output is a single parse tree, but when the CFG becomes sufficiently large, it can 
output multiple parses for the same input.

We can also visualize the tree:

      ...

      tree.draw()

The output is shown in Figure 6.5:

Figure 6.5 – Parse tree example

A determiner (DT) and a noun (NN) are combined to form a noun phrase (NP), which, along with 
the verb (VBZ) and the adjective (JJ), form the sentence (S).
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Creating the previous analysis grammar was not particularly challenging. On the other hand, it can 
only parse one sentence! What about extending the rules so that they support sentences such as The 
sky is blue, The sky is red, The sea is blue, and The sea is red? The solution, in this case, is to use the 
notational shorthand, |, which can be read as or. This operator allows multiple rules within a single 
line to be included. For example, NN can either be sky or sea while JJ can either be blue or red. 
The following code shows the extended grammar:

# The grammar consists of six but more powerful rules.

analysis_grammar = nltk.CFG.fromstring("""

    S -> NP VBZ JJ

    NP -> DT NN

    DT -> 'The' | 'the'

    NN -> 'sky' | 'sea'

    VBZ -> 'is'

    JJ -> 'blue' | 'red'

    """)

To verify that it supports all the necessary phrases, let’s generate 10 (n=10) possible expansions:

from nltk.parse.generate import generate

# Generate ten examples at most.

for sentence in generate(analysis_grammar, n=10):

    print(' '.join(sentence))

>> The sky is blue

The sky is red

The sea is blue

The sea is red

the sky is blue

the sky is red

the sea is blue

the sea is red

The output consists of eight sentences that include the total coverage initially planned. Let’s continue 
this discussion with another type of analysis for the source sentence.
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Creating dependency grammars

While CFG is concerned with how words and sequences of words combine to form constituents, other 
types of grammar focus on how words relate to other words; specifically, dependency grammar keeps 
track of the relation between a head word and its dependents. More often, the head of the sentence 
is the verb. Every other word depends on the head or connects to it through other dependencies. 
Using a dependency parser, we can analyze the grammatical structure of a sentence and obtain the 
relationships between head words and those that modify the heads. For example, in Figure 6.6, the 
arrow from the word blue to the word sky indicates that the latter modifies blue, and the label nsubj 
assigned to the arrow describes the dependency – in this case, nominal subject:

Figure 6.6 – Dependency parsing example

To clarify these concepts, let’s create a grammar that consists of three rules for word-to-word dependency 
relations and incorporate it through a dependency parser:

# Create the dependency grammar that includes three rules.

Dependency_grammar = nltk.DependencyGrammar.fromstring("""

    'is' -> 'sky' | 'sea' | 'blue' | 'red'

    'sky' -> 'The' | 'the'

    'sea' -> 'The' | 'the'

    """)

# Create the dependency parser.

pdp = nltk.ProjectiveDependencyParser(dependency_grammar)

Based on the previous grammar, the verb is constitutes the head of the sentence. Next, we must feed 
the parser with an input phrase:

# Create the input.

input = ['The', 'sky', 'is', 'blue']

# Parse the input.

trees = pdp.parse(input)

# Print the parse trees.



Teaching Machines to Translate222

for tree in trees:

    print(tree)

>> (is (sky The) blue)

For this simplistic grammar, only one parse tree is generated, which we can visualize in Figure 6.7:

Figure 6.7 – Dependency tree example

This tree helps us identify semantic relations between words in the sentence, contrary to the trees 
from CFGs, which only tell us how words join with the other words of the sentence. In this example, 
the words sky and blue are related through the verb is. Note that we capture bare dependency 
information in this example without specifying its type. The following section presents another 
important analysis technique.

Executing name entity resolution

During any translation task, we can encounter words in the source language that should not be translated 
into the target. For instance, names of people, organizations, expressions of times, locations, and so 
on can be transferred without any alternation (especially when the language pair shares a common 
alphabet). But how can we know this? The solution is an information extraction technique known as 
named-entity resolution (NER). NER seeks to locate and classify named entities in text into predefined 
categories. In Figure 6.8, we are performing NER using some sample text from Wikipedia (https://
en.wikipedia.org/wiki/Apollo_11):

Figure 6.8 – NER of a sample phrase

https://en.wikipedia.org/wiki/Apollo_11
https://en.wikipedia.org/wiki/Apollo_11
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Different tags have been identified correctly, such as PERSON, LOCATION, TIME, NUMBER, 
and DURATION. However, the lunar module, Eagle, has been falsely tagged as ORGANIZATION.

Now, let’s learn how to perform NER in nltk while using the phrase The Aston Martin is 
blue as input:

# Download nltk models/corpora.

nltk.download('maxent_ne_chunker')

nltk.download('words')

# Tokenize the input text.

text = nltk.word_tokenize("The Aston Martin is blue")

# Parse the input.

tags = nltk.pos_tag(text)

# Find the name entities.

tree = nltk.ne_chunk(tags)

After tokenizing the input, we execute POS tagging. The tagging output constitutes the input to the 
ne_chunk method, which acts as a chunker. Chunking is a type of shallow parsing that follows POS 
tagging (grammatical information) and adds more structure to the sentence (semantic information). 
While a deep parse tree has many levels between the root and the leaves, there are only a few in 
shallow parsing. The benefits, in this case, are that it is quicker and generally more accurate. You can 
consider chunking a lightweight alternative to NER, as the latter is computationally more extensive.

Next, we must draw the tree:

tree.draw()

The output is shown in Figure 6.9:

Figure 6.9 – NER tree sample
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Compared to Figure 6.4, there is a new tag for Aston and Martin called NNP, which signifies a proper 
noun in singular form. The semantic value of the phrase Aston Martin refers to an organization, so 
if we were to translate it into French, we could simply copy it from the English text.

Next, we must extract the tagging tokens using the IOB format (short for inside, outside, beginning), 
which is used for tagging tokens in a chunking task:

# Get the IOB tags.

iob_tags = nltk.tree2conlltags(ne)

# Print the IOB tags.

print(iob_tags)

>> [('The', 'DT', 'O'), ('Aston', 'NNP', 'B-ORGANIZATION'), 
('Martin', 'NNP', 'I-ORGANIZATION'), ('is', 'VBZ', 'O'), 
('blue', 'JJ', 'O')]

IOB provides three tags to refer to parts of a chunk (group of words). These are similar to POS tags 
but can denote the inside, outside, and beginning of a chunk:

•	 The I- prefix before a tag indicates that the tag is inside a chunk

•	 The B- prefix before a tag indicates that the tag is the beginning of a chunk

•	 The O tag indicates that a token belongs to no chunk (outside)

In our example, most words do not belong to any particular chunk; that is why they are noted with 
O. Aston is at the beginning of the ORGANIZATION chunk, so it’s labeled as B-ORGANIZATION. 
Similarly, Martin, inside the same chunk, is labeled as I-ORGANIZATION.

In summary, all the different steps for analyzing a source sentence let us create the representations 
for the two examples phrases shown in Figure 6.10:

Figure 6.10 – Two source sentence representations
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Even with these simple phrases, we can observe multiple levels of analysis. For example, each word is 
assigned a grammatical category (POS tag), while the verb’s morphology is identified correctly (is = 
third-person singular). Furthermore, some words are grouped into constituents to form noun phrases 
(such as The sky), and the words sky and blue relate to each other through the verb is. Finally, Aston 
Martin should remain untranslated to the target language.

Recall that we are still in the ascending phase of the Vauquois triangle, where the aim is to elicit useful 
representations of the source sentences. We can now proceed to the second step and learn how to 
create rules that can transfer the source representation to the target one.

Creating transfer and generation grammar

A feature-based grammar in nltk is a convenient way to create transfer rules for MT. The reason 
is that it offers feature structures in the form of attribute-value pairs, which can be used to encode 
the grammatical categories of the words. So far, we have tried to extract useful information about the 
source sentences that can facilitate their translation into the target language. For the sake of simplicity, 
however, the transfer rules created in this section only exploit the CFG presented earlier and omit any 
information coming from the dependency grammar or the NER task.

In the following code, we start with the definition of our feature grammar:

# Create the grammar string.

g = """

# S expansion productions.

S[AGR1=?np, ARG2=?vbz, ARG3=?jj] -> NP[AGR=?np] VBZ[AGR=?vbz] 
JJ[AGR=?jj]

# NP expansion productions.

NP[AGR=[DT=?dt, NN=?nn]] -> DT[AGR=?dt] NN[AGR=?nn]

# Lexical productions.

DT[AGR=[TEXT='Le', SEM='determiner']] -> 'The'

DT[AGR=[TEXT='le', SEM='determiner']] -> 'the'

NN[AGR=[TEXT='ciel', SEM='noun']] -> 'sky'

NN[AGR=[TEXT='mer', SEM='noun']] -> 'sea'

VBZ[AGR=[TEXT='être', SEM='verb', TENSE='present', 
NUM='singular']] -> 'is'

JJ[AGR=[TEXT='bleu', SEM='adjective']] -> 'blue'

JJ[AGR=[TEXT='rouge', SEM='adjective']] -> 'red'

"""
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The grammar includes several attribute-value pairs; for example, the SEM attribute can have noun 
as its value. With the aid of the transfer rules, we can parse a source representation (in English) and 
return a sequence of attributes named TEXT with the target language representations (in French). 
Observe the hierarchical expansion of the rules as the sentence, S, consists of noun phrases, NP, which 
consists of nouns, NN, and determiners, DT. Now, we can use this grammar to parse an input phrase:

# Create the input, transfer grammar, and parser.

input = ['The', 'sky', 'is', 'blue']

transfer_grammar = nltk.grammar.FeatureGrammar.fromstring(g)

parser = nltk.parse.FeatureEarleyChartParser(transfer_grammar)

# Parse the input and print the result.

trees = parser.parse(input)

for tree in trees: print(tree)

>> (S[AGR1=[DT=[SEM='determiner', TEXT='Le'], NN=[SEM='noun', 
TEXT='ciel']], ARG2=[NUM='singular', SEM='verb', 
TENSE='present', TEXT='être'], ARG3=[SEM='adjective', 
TEXT='bleu']]

  (NP[AGR=[DT=[SEM='determiner', TEXT='Le'], NN=[SEM='noun', 
TEXT='ciel']]]

    (DT[AGR=[SEM='determiner', TEXT='Le']] The)

    (NN[AGR=[SEM='noun', TEXT='ciel']] sky))

  (VBZ[AGR=[NUM='singular', SEM='verb', TENSE='present', 
TEXT='être']]

    is)

  (JJ[AGR=[SEM='adjective', TEXT='bleu']] blue))

To demystify the previous output, let’s summarize the most important information in Figure 6.11:

Figure 6.11 – Internal representation in the target language

Based on the previous output, we managed to obtain an internal representation in the target language, 
but our work is not finished yet. The word être is the infinitive form of the verb to be in French and 
must agree with the subject in the sentence. Therefore, we need to transform it into the present tense, 
third-person singular form.
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It’s about time to introduce the third step in the Vauquois triangle and create a generation grammar. 
The latter transforms the internal representation in the target language into the translation emitted 
by the system. We must use a feature grammar again:

# Create the grammar string.

g = """

# S expansion productions.

S[AGR1=?np, ARG2=?vbz, ARG3=?jj] -> NP[AGR=?np] VBZ[AGR=?vbz] 
JJ[AGR=?jj]

# NP expansion productions.

NP[AGR=[DT=?dt, NN=?nn]] -> DT[AGR=?dt] NN[AGR=?nn]

# Lexical productions.

DT[AGR=[TEXT='Le']] -> 'Le'

DT[AGR=[TEXT='le']] -> 'le'

NN[AGR=[TEXT='ciel']] -> 'ciel'

NN[AGR=[TEXT='mer']] -> 'mer'

VBZ[AGR=[TEXT='est', SEM='verb', TENSE='present', 
NUM='singular']] -> 'être'

JJ[AGR=[TEXT='bleu']] -> 'bleu'

JJ[AGR=[TEXT='rouge']] -> 'rouge'

"""

Finally, we must create the parser using the generation grammar and test it with the representation 
we encountered earlier:

# Create the input, transfer grammar, and parser.

input = ['Le', 'ciel', 'être', 'bleu']

generation_grammar = nltk.grammar.FeatureGrammar.fromstring(g)

parser = nltk.parse.FeatureEarleyChartParser(generation_
grammar)

# Parse the input and print the result.

trees = parser.parse(input)

for tree in trees: print(tree)

>> (S[AGR1=[DT=[TEXT='Le'], NN=[TEXT='ciel']], 
ARG2=[NUM='singular', SEM='verb', TENSE='present', TEXT='est'], 
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ARG3=[TEXT='bleu']]

  (NP[AGR=[DT=[TEXT='Le'], NN=[TEXT='ciel']]]

    (DT[AGR=[TEXT='Le']] Le)

    (NN[AGR=[TEXT='ciel']] ciel))

  (VBZ[AGR=[NUM='singular', SEM='verb', TENSE='present', 
TEXT='est']]

    être)

  (JJ[AGR=[TEXT='bleu']] bleu))

The output is indeed the correct translation of the input phrase! A French speaker, however, should 
have spotted a problem with the generation rules. The sea in English should be translated into La mer 
in French, not Le mer, which is wrong. The articles le and la refer to masculine and feminine nouns, 
respectively. We must extend the rules to ensure the determiner agrees with the noun it modifies in 
terms of number and gender. As more sentences must be supported, more complex rules should be 
added to the grammar. The linguist’s job becomes harder as they must try to include more and more 
cases and exceptions to these rules. Additionally, syntax parsing methods suffer from structural 
ambiguity, as there is often the possibility that more than one correct parse for a given sentence exists. 
So, TBMT approaches work well for limited domain applications (although the effort can still be very 
high), but for general-purpose MT systems, the task becomes insurmountable.

The following section concludes the discussion on RBMT systems with a technique that presents 
competitive advantages when we need to support multiple translation pairs in the same application.

Using interlingual machine translation

The third technique for RBMT allows us to reach the peak of the Vauquois triangle using analysis 
grammar and mapping the source sentence into a universal interlingua representation, hence the name 
interlingual machine translation (IMT). From this point, a generation grammar can be used to obtain 
the target sentence without the need to incorporate any transfer rules. The idea behind a universal 
representation of languages is not new. In 1629, Marin Mersenne (https://en.wikipedia.
org/wiki/Marin_Mersenne) and René Descartes (https://en.wikipedia.org/
wiki/Ren%C3%A9_Descartes) proposed an artificial universal language with equivalent ideas 
in different tongues sharing one symbol. Essentially, they proposed cataloging all the elements of 
human imagination. If this were possible, the translation among languages would be effortless through 
the shared symbols.

While in TBMT, the linguistic rules are specific to each source-target pair, in IMT, they are specific to 
every single language and their interlingua. Generally, for N languages, we need to implement Nx(N-1) 
sets of linguistic rules in the TBMT and 2xN sets for the IMT case. Figure 6.12 illustrates an example 
with six languages (for brevity, only a subset of the combinations has been presented):

https://en.wikipedia.org/wiki/Marin_Mersenne
https://en.wikipedia.org/wiki/Marin_Mersenne
https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
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Figure 6.12 – Number of rule sets for TBMT (3x3) and IMT (3+3)

You are probably wondering what this interlingual representation looks like. An analogy is illustrated 
in Figure 6.13:

Figure 6.13 – Interlingua translation using pictograms

Suppose we are asked to translate the source phrase I love dogs into French, German, and Spanish. 
Based on Figure 6.13, the first step is extracting the semantic representation of the sentence using an 
English analysis grammar. Next, the representation is translated into an interlingua, which is depicted 
as a series of language-agnostic pictograms. Afterward, specific generation grammars translate the 
interlingua into one of the target languages.

It’s hardly convincing that pictograms are the right way to create an interlingual representation. Images 
are notoriously ambiguous, and there is no agreement among cultures on universal designs. Moreover, 
there are not enough pictograms to represent all concepts, and it’s cumbersome to design and sketch 
them in the first place. Similar issues arise for text-based interlingual representations, as they must 
be both abstract and independent of the source and target languages. Although RBMT techniques 
are still in use, they target a narrow set of applications.

The following section presents the next milestone in MT’s evolution.
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Introducing example-based machine translation
In the era of RBMT systems, it became apparent that a new paradigm in MT was necessary. The 
reliance on linguistic rules presents many shortcomings. As we saw previously, using a corpus of 
already-translated examples could serve as a model to base the translation task on. This is the basic 
idea behind example-based machine translation (EBMT) systems; keep track of well-translated 
fragments and use this information to facilitate the translation of new sentences. Humans often 
process short sentences this way; first, they split the source into smaller fragments, then translate the 
pieces by analogy into previous examples, and, finally, recombine those translations into the target 
sentence. Deep linguistic analysis is not necessary, and the more examples that are available, the more 
the translation accuracy improves. Figure 6.14 shows an example:

Figure 6.14 – Using existing translated fragments in MT

The primary resource of an EBMT system is parallel bilingual corpora created by professionals that 
are available either as proprietary or as a free resource. For instance, CLARIN (https://www.
clarin.eu/resource-families/parallel-corpora) and OPUS (http://opus.
nlpl.eu/) are well-known resources that contain pairs of source and target sentences. The effort of 
creating these corpora is significant as, besides acquiring the translation pairs, we need to perform text 
alignment at the sentence and word levels to identify the fragments. Manual alignment by experts is 
often performed for this task; most of the time, however, automatic methods are incorporated, though 
this has a price in terms of precision.

Let’s learn how to use the alignments that have been defined for a bilingual pair programmatically. In 
the following code, we are considering two examples from the English-to-French pair:

from nltk.translate import AlignedSent, Alignment

# Hold the bi-lingual text.

bitext = []

https://www.clarin.eu/resource-families/parallel-corpora
https://www.clarin.eu/resource-families/parallel-corpora
http://opus.nlpl.eu/
http://opus.nlpl.eu/
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# Create two examples from German to English, along with the 
alignments.

bitext.append(AlignedSent(['blue', 'is', 'The', 'sky'],

                  ['Le', 'ciel', 'est', 'bleu'],

                  Alignment.fromstring('0-3 1-2 2-0 3-1')))

bitext.append(AlignedSent(['yellow', 'is', 'The', 'sun'],

                  ['Le', 'soleil', 'est', 'jaune'],

                  Alignment.fromstring('0-3 1-2 2-0 3-1')))

# Print the source words in the second example.

bitext[1].words

>> ['yellow', 'is', 'The', 'sun']

For example, the word yellow at position 0 is aligned with the word jaune at position 3. By the 
way, the color of the sun is white, as it emits all colors of the rainbow more or less evenly.

We can verify these alignments using the following code:

# Print the target words in the second example.

bitext[1].mots

>> ['Le', 'soleil', 'est', 'jaune']

# Print the alignments in the second example.

bitext[1].alignment

>> Alignment([(0, 3), (1, 2), (2, 0), (3, 1)])

As mentioned previously, creating the alignment by hand is cumbersome; another option is to use 
off-the-shelf parallel corpora with alignments. The nltk toolkit includes comtrans, a subset of 
Europarl’s sentence-aligned parallel corpus (https://www.statmt.org/europarl/) for 
various languages. Let’s load the module and pick the first example from the English-to-French dataset:

# Download nltk corpus.

nltk.download('comtrans')

from nltk.corpus import comtrans

# Get the first example from the english/french corpus.

fe = comtrans.aligned_sents('alignment-en-fr.txt')[0]

https://www.statmt.org/europarl/
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# Print the source words.

fe.words

>> ['Resumption', 'of', 'the', 'session']

The target words in this case are as follows:

# Print the target words.

fe.mots

>> ['Reprise', 'de', 'la', 'session']

Now, we can extract the alignments between the source and the target:

# Print the alignments.

fe.alignment

>> Alignment([(0, 0), (1, 1), (2, 2), (3, 3)])

In the previous example, the mapping of the words is one-to-one. Unfortunately, this is not the case 
in most MT tasks. Consider, for example, the following pair:

# Get the 52nd example from the English/French corpus.

fe = comtrans.aligned_sents('alignment-en-fr.txt')[52]

# Print the source words.

fe.words

>> 'We', 'do', 'not', 'know', 'what', 'is', 'happening', '.']

# Print the target words.

fe.mots

>> ['Nous', 'ne', 'savons', 'pas', 'ce', 'qui', 'se', 'passe', 
'.']

The output in this case is as follows:

# Print the alignments.

fe.alignment

>> Alignment([(0, 0), (1, 1), (2, 3), (3, 2), (4, 4), (4, 5), 
(5, 6), (6, 7), (7, 8)])
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There is a mix of alignments here, so performing this task by hand is laborious. In this case, we can 
incorporate models that automatize this process. The IBM Model 2 lexical translation model is such 
an option that’s available from nltk. The following code demonstrates a few bilingual pairs from 
French to English that can be used to train a lexical translation model:

import nltk.translate.ibm2

from nltk.translate import AlignedSent, Alignment

# Hold the bi-lingual text.

bitext = []

# Create examples from French to English.

bitext.append(AlignedSent(

    ['petite', 'est', 'la', 'maison'],

    ['the', 'house', 'is', 'small']))

bitext.append(AlignedSent(

    ['la', 'maison', 'est', 'grande'],

    ['the', 'house', 'is', 'big']))

bitext.append(AlignedSent

    (['le', 'livre', 'est', 'petit'],

    ['the', 'book', 'is', 'small']))

bitext.append(AlignedSent(

    ['la', 'maison'], ['the', 'house']))

bitext.append(AlignedSent(['le', 'livre'], ['the', 'book']))

bitext.append(AlignedSent(['un', 'livre'], ['a', 'book']))

Based on the previous examples, we can create a model and examine the probability of the word 
livre being translated as book:

# Create the lexical translation model from the examples.

ibm2 = nltk.translate.ibm2.IBMModel2(bitext, 5)

# Get the translation probabilities from the model.

print(round(ibm2.translation_table['livre']['book'], 3))

>> 0.879
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Don’t be surprised that the output probability is not equal to 1.0. All models suffer from certain 
limitations such as biases, vagaries of data noise and sampling, and so forth. Comparing livre with 
any other word in the example gives a much smaller probability. Finally, we can obtain the alignments 
for one sample phrase:

test_sentence = bitext[2]

test_sentence.words

>> ['le', 'livre', 'est', 'petit']

test_sentence.mots

>> ['the', 'book', 'is', 'small']

test_sentence.alignment

>> Alignment([(0, 0), (1, 1), (2, 2), (3, 3)])

The output provides the correct result, but admittedly, our bilingual corpus was tiny and thus targeted 
the lowest end of complexity.

To summarize this section, the three main tasks in the EBMT approach are as follows:

1.	 Matching phrase fragments of the source sentence to existing examples.

2.	 Identifying the corresponding translation fragments.

3.	 Recombining the translation fragments to create the target sentence.

Among these three steps, the first is the most critical and challenging. In real-world applications, the 
search space is huge, as source sentences can be segmented in multiple ways. Each bilingual corpus 
can have many aligned fragments relevant to our source sentence; thus, there could be multiple 
translations for the same source in the reference table. Sentence aligning can be performed through 
sophisticated methods such as the Gale-Church algorithm, for which a description is outside the scope 
of this book. However, it works on the principle that equivalent sentences should roughly correspond 
in length and uses dynamic programming to find their proper alignment.

Note
Dynamic programming is a technique in computer programming that can simplify processes 
containing multiple subproblems. It finds the optimal solution to each subproblem and then 
makes an informed choice to combine the results for the global solution.

Another approach related to EBMT is translation memory, which is frequently encountered in 
computer-assisted translation (CAT) tools. Systems of this kind aim to assist professional translators 
in their work by providing ready-made translations of fragments from a database. While EBMT is 
a method of performing the MT task automatically, CAT tools are simply an aid for translators who 
are in charge of making the final decision.
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Now, let’s look at the next important milestone in the field of MT.

Introducing statistical machine translation
EBMT paved the way for data-driven approaches, where the primary source of knowledge is the 
observed data. As a result, less emphasis is given to the representation logic, such as creating hand-
crafted rules. Instead, analyzing the data directly, especially when there’s a large amount of it, can reveal 
information we couldn’t easily identify otherwise. RBMT techniques follow a top-down approach, 
and domain experts are required to create models that can replicate the data. Conversely, data-driven 
approaches are bottom-up, and the data derives the model. This section focuses on statistical machine 
translation (SMT), which involves exploiting models whose parameters are learned from bilingual text 
corpora. Strictly speaking, SMT systems do not follow the Vauquois triangle as neither a source nor 
a target representation is incorporated. Intuitively, they work on the assumption that every sentence 
in one language can be translated into any sentence in the target one. The overarching goal is to find 
the most probable translation in each case. The SMT method starts from the source sentence, and 
different alternative paths are constructed to deduce the correct translation. As the process evolves, 
low-probability paths are pruned until we reach the most probable outcome, as shown in Figure 6.15:

Figure 6.15 – Multiple paths to reach the most probable translation in an SMT system

The whole process is not deterministic; each SMT algorithm is judged on its ability to find the best 
path. We’ll examine the details in the next section.
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Modeling the translation problem

We have already mentioned that SMT aims to find the most probable translation, T, given a source 
sentence, S. So, we need to find the specific 𝑇𝑇  that maximizes the probability, 𝑃𝑃(𝑇𝑇|𝑆𝑆) . This task is known 
as maximum likelihood estimation (MLE), written in mathematical formalism as 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑃𝑃(𝑇𝑇|𝑆𝑆) . 
Theoretically, we can perform an exhaustive search on all possible translations until we find the one 
that maximizes the previous conditional probability. In practice, however, this is not feasible, and Bayes’ 
theorem, presented in Chapter 2, Detecting Spam Emails, provides a solution. Using this theorem, we 
can expand the previous expression, which now becomes 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑃𝑃(𝑆𝑆|𝑇𝑇)𝑃𝑃(𝑇𝑇)/𝑃𝑃(𝑆𝑆) . Even if we 
examine all possible translations against the source sentence, the portion, 𝑃𝑃(𝑆𝑆)  (probability of the 
source sentence), remains constant. In maximization problems, we are interested in quantities that 
vary. Therefore, constants are irrelevant, and we can remove them from the subsequent calculations. 
Now, the expression is simplified as follows:

The initial problem is decomposed into two factors (subproblems), the first of which is the conditional 
probability, 𝑃𝑃(𝑆𝑆|𝑇𝑇) , known as the translation model. This model is estimated from bilingual parallel 
corpora; more about this in the next section. It expresses our confidence that the source sentence, S, 
had a particular translation, T.

Let’s consider an example where S is the phrase Life is beautiful and has four candidate translations, 
T, in French: Bon le ciel est, La fille est belle, Vie est belle, and La vie est belle. Then, using a contrived 
translation model, we can perform the following calculations:

𝑃𝑃(“𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”|”𝐵𝐵𝐵𝐵𝐵𝐵 𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒”) =  0.0000004 

𝑃𝑃(“𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”|”𝐿𝐿𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”) = 0.0000008 

𝑃𝑃(“𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”|”𝑉𝑉𝑉𝑉𝑉𝑉 𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”) = 0.000032  ✓ 

𝑃𝑃(“𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”|”𝐿𝐿𝐿𝐿 𝑣𝑣𝑣𝑣𝑣𝑣 𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”) = 0.000024 

The third option has the highest probability out of the four candidate translations. However, the 
fourth candidate is the correct answer. What should we do? It’s time to incorporate the second factor 
of MLE. The probability, 𝑃𝑃(𝑇𝑇) , is known as the language model and expresses our confidence that 
the sentence is probable in the target language. Intuitively, it is like showing a sentence to a native 
French speaker and asking them whether it makes sense. The language model can be constructed in 
various ways, and in practice, we can use any corpus in the target language. In the next section, we will 
revisit this topic in more detail but for the time being, let’s consider the following revised calculations:

𝑃𝑃(“𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”|”𝐵𝐵𝐵𝐵𝐵𝐵 𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒”)𝑃𝑃(”𝐵𝐵𝐵𝐵𝐵𝐵 𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒”) = 0.0000004 ∙ 0.000001 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑃𝑃(𝑆𝑆|𝑇𝑇)𝑃𝑃(𝑇𝑇) 
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𝑃𝑃(“𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”|”𝐿𝐿𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”)𝑃𝑃(”𝐿𝐿𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”) = 0.0000008 ∙ 0.0003 

𝑃𝑃(“𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”|”𝑉𝑉𝑉𝑉𝑉𝑉 𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”)𝑃𝑃(” 𝑉𝑉𝑉𝑉𝑉𝑉 𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”) = 0.000032 ∙ 0.000002 

𝑃𝑃(“𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”|”𝐿𝐿𝐿𝐿 𝑣𝑣𝑣𝑣𝑣𝑣 𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”)𝑃𝑃(”𝐿𝐿𝐿𝐿 𝑣𝑣𝑣𝑣𝑣𝑣 𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏”) = 0.000024 ∙ 0.0002 ✓ 

This time, we obtain the correct translation for the input sentence, which is the fourth option. In 
summary, we search for the result that is highly probable (depicted with the + symbol in Table 6.1) 
in both the translation and language models:

Table 6.1 – Looking for the most probable result in the translation and language models

It should be evident that splitting the translation problem into two subproblems is beneficial. But how 
are these created in the first place? We’ll answer this question in the following section.

Creating the models

First, to create the translation model, we use a phrase table that includes sequences of words in the 
source and target languages, along with their probability:

from collections import defaultdict

from math import log

from nltk.translate import PhraseTable

from nltk.translate.stack_decoder import StackDecoder

# Create the phrase table.

phrase_table = PhraseTable()

# Populate the table with examples.

phrase_table.add(('das',), ('the', 'it'), log(0.4))

phrase_table.add(('das', 'ist'), ('this', 'is'), log(0.8))

phrase_table.add(('ein',), ('a',), log(0.8))

phrase_table.add(('haus',), ('house',), log(1.0))

phrase_table.add(('!',), ('!',), log(0.8))
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The table is populated with five German-to-English pairs and their log probability quantifying how 
probable the specific translation is. If you are wondering why the log function is used, the reason is 
that it can turn multiplication into addition. And computers are much faster in performing addition! 
We must perform many multiplications to find the most probable translation in SMT, which can lead 
to underflow. The condition is that multiplying very small numbers outputs an even smaller result 
that a computer cannot represent. Therefore, using log probabilities is hugely beneficial.

Now, let’s create the language model:

# Create the dictionary of probabilities for each n-gram.

language_prob = defaultdict(lambda: -999.0)

# Populate the dictionary uni-grams and bi-grams.

language_prob[('this',)] = log(0.8)

language_prob[('is',)] = log(0.6)

language_prob[('a', 'house')] = log(0.2)

language_prob[('!',)] = log(0.1)

# Create the language model.

language_model = type('',(object,),{'probability_change': 
lambda self, context, phrase: language_prob[phrase], 
'probability': lambda self, phrase: language_prob[phrase]})()

This model has been constructed using four n-grams, along with their log probability. In Chapter 9, 
Generating Text in Chatbots, we will perform this task more intensively.

A stack decoder utilizes the two models to extract the translation of the German phrase das ist 
ein haus (formally, nouns in German should be capitalized):

# Create the stack decoder and translate a sentence.

stack_decoder = StackDecoder(phrase_table, language_model)

stack_decoder.translate(['das', 'ist', 'ein', 'haus', '!'])

>> ['this', 'is', 'a', 'house', '!']

And voilà, the correct translation is emitted by the decoder!
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Before finishing this section, let’s say a few things about the decoding process. First, in phrase-based 
translation, the source sentence is segmented into phrases of one or more words, along with their 
translations. As the segmentation can be done differently, we might end up with multiple translations 
for the same source in the phrase table. Consequently, the decoder needs to keep parallel hypotheses, 
and the search space grows quickly. The decoder narrows the space using dynamic programming 
because hypotheses with a lower score are pruned.

The Jupyter notebook for this chapter contains code for creating the two models from files available 
by Moses, a statistical MT system used to train translation models for any language pair (http://
www.statmt.org/moses/download/sample-models.tgz).

The methods presented so far provided the necessary context to understand the evolution of MT 
systems. The relevant discussion doesn’t imply by any means that these are obsolete techniques or 
that they can’t be applied to modern deployments. On the contrary! Hopefully, you have familiarized 
yourself with these methods, which are still used today and can be incorporated into other NLP 
applications in the future. In this respect, you have enhanced your toolbox! Of course, it would be a 
deficit if we don’t present state-of-the-art MT architectures, which is the topic of the following section.

Introducing sequence-to-sequence learning
Many kinds of problems in machine learning involve transforming an input sequence into an output 
one. Sequence-to-sequence (seq2seq) learning has proven useful in applications that demand this 
transformation. For instance, free-form question answering (generating a natural language answer 
to a natural language question), text summarization, conversational interfaces such as chatbots, and 
so forth can benefit from seq2seq learning. It is not surprising that MT applications can also exploit 
this technique to convert a source sequence, such as an English phrase, into the corresponding target 
sequence, such as an Arabic translation. Seq2seq, pronounced as seek-to-seek, learning falls under 
the category of neural MT, and unlike solutions based on RBMT and SMT, no domain knowledge of 
the languages involved is necessary. You can treat the translation problem as the association between 
input and output tokens of words or characters. Moreover, the translation is end-to-end, which means 
that one model is required instead of many.

A common problem in seq2seq learning is context persistence, especially when the sequences become 
too lengthy. Why does this matter? Consider, for instance, the following sentences: Tom and Jerry 
are playing outside. They like it a lot! In this case, we must read the first sentence to make sense of the 
word They. While reading this book, you constantly do a similar task, keeping track of information 
far beyond adjacent sentences.

http://www.statmt.org/moses/download/sample-models.tgz
http://www.statmt.org/moses/download/sample-models.tgz
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Similarly, context is crucial for choosing the correct translation in an MT system. For example, 
the word back can be either a noun, verb, adjective, or adverb, and it is hard to guess which form 
or meaning to choose without the proper context. We may also need to identify the gender of the 
present subject so that the correct pronoun is used later in the translation. Recurrent neural networks 
(RNNs) alleviate this problem as they are suitable for sequential data and have loops for persisting 
information. The main difference with a feed-forward neural network is the presence of a memory 
loop, thus the name recurrent. RNNs have a memory to register all information that has been extracted 
so far. A typical neural network uses its data once, generates an output, and compares its prediction 
with the reference one. Then, based on the calculated accuracy, the model’s parameters are adjusted 
through backpropagation, and the process repeats until an acceptable performance is achieved. For 
an RNN, however, the loop feeds the context back to the model at every timestep. The left-hand side 
of Figure 6.16 shows this process schematically:

Figure 6.16 – High-level architecture of an RNN (left) and an unrolled RNN example (right)

To be more precise, let’s unroll the RNN using an example phrase, as shown on the right-hand side of 
Figure 6.16. During the first timestep, the RNN receives the word Tom as input without any context. 
Then, the RNN produces some kind of output, depending on the task, and a context vector that is 
passed in the second timestep, along with the word and. This process repeats until the last word in the 
input sentence is consumed. Intuitively, it is like doing a copy-paste of the same network, passing a 
message to the successor at each timestep. By the end of this process, the propagated message should 
contain enough information to associate Tom and Jerry with the word They.

The following section shows how RNNs can be glued together to create robust models.
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Deciphering the encoder/decoder architecture

If you grasped the basic concepts from the previous discussion, it is straightforward to deduce how 
RNN can be used to solve the main topic of this chapter. Initially, we model the source and target 
sequences with a separate recurrent network that can extract the necessary dependencies. The first 
network encodes the source sentence, hence the name encoder, while the second network decodes 
the input into the target language, hence the name decoder. Gluing these networks together creates 
an end-to-end translation pipeline for any pair of languages. A critical remark is that we must create 
two separate network topologies for inference or training the model. Figure 6.17 shows a typical 
encoder-decoder seq2seq architecture for inference:

Figure 6.17 – Typical encoder-decoder seq2seq architecture for inference

The aim is to decode an unknown source sequence and predict its target output. The model consists 
of three main parts that work synergetically:

1.	 The encoder (left part) consumes words sequentially from the input sentence. The first RNN 
cell processes the first source word and emits a hidden state that is fed to the subsequent cell. 
The latter emits a new hidden state after consuming the second word. The encoding terminates 
when the end of the input is reached.

2.	 The context vector (middle part) is essentially the final hidden state of the encoder. It aims to 
encapsulate the information from all input elements.

3.	 The decoder (right part) predicts a word as output (translation) at each timestep. The first RNN 
cell utilizes the context vector to produce an output and a hidden state. Both are fed to the 
subsequent cell, which repeats similar processing. Every word in the translation is conditional 
to the entire source sentence and the translated word that preceded it. The decoding terminates 
when no more predictions are made or we reach a maximum threshold of iterations.
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In this example, observe that the source and target sequences do not have the same length. This 
powerful feature of seq2seq models makes them germane for MT applications.

To train the model, we must use a slightly different topology, as illustrated in Figure 6.18:

Figure 6.18 – Typical encoder-decoder seq2seq architecture for training

The critical change happens in the decoder part, which uses ground truth as input instead of the 
prior step output. The correct translation for every source sentence is known so that we can feed this 
information to the decoder at each timestep. Notice the usage of two special tokens, namely start_of_
stream (<sos>) and end_of_stream (<eos>). The first token signifies the start of the translation, which 
is why it’s fed into the first cell of the decoder. The second token is the final output and signifies the 
end of the translation process. The encoder and the decoder consist of several cells of RNN that are 
trained simultaneously from the data. The model learns by the decoder’s output errors being propagated 
to the encoder via backpropagation. Intuitively, it is like having a teacher at each timestep correcting 
the decoder. An analogy is illustrated in Figure 6.19:
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Figure 6.19 – Training without teacher forcing (top) and with teacher forcing (bottom)

While in the first scenario (top), the teacher corrects the student at the end, while in the second case 
(bottom), they intervene after every interaction. For this reason, the second strategy, known as teacher 
forcing, proves beneficial for training an encoder-decoder seq2seq model.

You might be wondering how the context vector is calculated in the first place. The next section sheds 
light on this.

Understanding long short-term memory units

We have often stressed the distinctive feature of RNN to memorize important information. But is 
there an upper bound on this ability? Human mental capacity is limited, and we have all found 
ourselves moving back and forth in a piece of text to spot crucial information that helps us decipher 
its meaning. Although, in theory, RNNs can handle long-term dependencies, they can effectively 
process sequences with a length of less than 10 in practice. The reason is an inherent problem in neural 
networks called the vanishing gradient. In our discussion in the Training artificial neural networks 
section of Chapter 4, Extracting Sentiments from Product Reviews, we saw how backpropagation uses 
gradient descent to update the parameters of a deep neural network during the training phase. At 
each iteration, the network’s parameters receive an update proportional to the partial derivative of 
the cost function concerning the current parameter. According to the chain rule, the derivatives of 
each layer are multiplied from the final layer to the initial one. There are situations, however, where 
the derivatives become small, and their multiplication decreases the gradient very quickly. Due to 
the gradient becoming vanishingly small, the earlier layers of the network learn slower than the later 
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ones. In extreme cases, the training process can stop completely. There are no vanishing gradient 
problems when a relatively small number of hidden layers are used. For long sequences, however, an 
RNN is unable to propagate useful gradient information to the layers near the input of the model, 
reducing its effectiveness.

One solution to this problem is to use another recurrent layer type called long short-term memory 
(LSTM) units. The basic principle behind these units is analogous to RNN: at each timestep, use a token 
from the data sequence, along with input from the previous timestep. The distinctive feature of LSTM, 
however, is its ability to remember information for long periods. For this reason, the structure of an 
LSTM is much more complex compared to the structure of an RNN. Figure 6.20 shows a schematic 
diagram of an LSTM. As daunting as it might seem, we can identify a few basic functions:

Figure 6.20 – Schematic diagram of LSTM

LSTM aims to keep track of both long and short-term dependencies in the input sequence. As the 
learning process evolves, the network needs to memorize important information and throw away 
information that is not relevant anymore. Recall the discussion in the Understanding artificial neurons 
section of Chapter 4, Extracting Sentiments from Product Reviews, about the role of an activation 
function. Essentially, it is a gate that allows or blocks information from passing through the next 
layer. The sigmoid layer (σ) outputs numbers between zero and one and, along with the pointwise 
multiplication operator, determines the amount of information to pass in the next step. An output of 
0 from the sigmoid layer means that any input should be discarded entirely.
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Conversely, an output of 1 lets everything pass through. An LSTM contains three gates (sigmoid 
layers) to control the flow of new information, which is the concatenation of the input in the current 
timestep and the hidden state from the preceding one. The whole process outputs a cell and a hidden 
state corresponding to long- and short-term memory. Depending on the application, we also get a 
third output, which results from the processing at each timestep. Notice that the new information 
has more than one chance to affect the cell and hidden states through the several sigmoid and tanh 
paths. At each timestep, the network decides on what information to keep for the local context (hidden 
state) and what for the global one (cell state). In all cases, however, every path has a sigmoid layer as 
a gatekeeper.

Let’s examine LSTM in more detail, starting from the first step in the pipeline, as shown on the left-
hand side of Figure 6.21:

Figure 6.21 – LSTM forget gate (left) and input gate (right)

This step decides whether we should keep the information from the previous timestamp or forget it. 
For example, if the network encounters a feminine name such as Alice, and after a few sentences, a 
male name such as Bob appears, it makes sense to forget the first person. Memorizing information 
in this way allows the proper gender pronoun to be applied later in the process. For this reason, the 
structure shown in this figure is called a forget gate.

The next step is determining which information must be kept in the cell state (long-term memory). 
Again, the structure shown on the right-hand side of Figure 6.21 does this. As before, the information 
passes through a sigmoid layer that transforms the values between 0 and 1. However, this time, we 
also use a tanh layer to regulate the values flowing through the network. As the LSTM unrolls, many 
mathematical computations take place, such as a number being multiplied by a value multiple times. 
In this case, it can explode after several iterations, causing other values to seem insignificant.
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Using the tanh layer is essential to transform all the possible values between -1 and 1. Based on the 
previous example, we would like the network to register Bob as the reference person. The structure 
shown here is called the input gate.

Then, we can update the cell state based on what we need to forget and what we wish to remember. 
As shown in Figure 6.22, we can apply the appropriate pointwise operations to the output of the two 
gates and update the previous cell state accordingly. After this step, the global context should have 
forgotten Alice and remember only Bob:

Figure 6.22 – Updating the cell state

Finally, the LSTM needs to emit the local context (new hidden state), as shown in Figure 6.23:

Figure 6.23 – LSTM output gate
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This step uses the newly modified cell state and passes it through a tanh layer. The result of this process 
is multiplied by the sigmoid output to determine what information the hidden state should carry. 
For example, we can register whether the subject is singular or plural in the local context and use this 
information to conjugate the verb in the next time step correctly. For obvious reasons, the structure 
in this figure is called the output gate. Note that although the process seems quite deterministic, like 
a perfectly regulated watch always working in the same way, it’s not. Machine learning algorithms 
are, in general, non-deterministic, and depending on the random initialization of their weights, they 
produce outcomes that vary.

To summarize, the forget gate decides what is relevant to keep from the previous steps, while the input 
gate decides what information to add from the current step. Both gates update the cell state (known 
as the global context or long-term memory). The output gate determines the hidden state (known as 
the local context or short-term memory). The result of this processing is a new cell and hidden states 
that are used to analyze the next token of the input sequence. The process terminates when the final 
token is fed to the LSTM.

In practice, we can use LSTM or Gated Recurrent Units (GRUs) networks in an encoder/decoder 
architecture, as both are a type of RNN. GRUs can be considered variations of the LSTM, which also 
try to solve the vanishing gradient problem. However, they have fewer parameters, and for that reason, 
they are computationally more efficient.

Now, let’s combine our accumulated knowledge and apply it to build an MT system.

Putting seq2seq in action

To create the seq2seq model, we will utilize an English-to-French bilingual corpus consisting of 
~200K source-target pairs. Due to resource limitations, we will only keep 8000 of those pairs to 
build the model. The code that follows (included in the seq2seq-LSTM.ipynb notebook) shows 
the specific steps:

import pandas as pd

import re

# Read the first 8K pairs in the dataset.

data = pd.read_table('./data/fra.txt',  usecols=range(2), 
names=['source', 'target'], nrows=8000)

# Replace no-break and thin spaces in the target sentences.

data.target = data.target.apply(lambda x: re.sub(u'\xa0|\
u202f|\u2009', u' ', x))

data.sample(5, random_state=123)

>>   source    target



Teaching Machines to Translate248

5676  Tom is loyal.  Tom est fidèle.

617  I'm game.    J'en suis.

415  Back off!    Cassez-vous.

7687  Life is crazy.  La vie est dingue.

6708  I caused this.  J'ai causé ceci.

Next, the <sos> and <eos> tokens are added to the target sentences at the beginning and the 
end, respectively:

# Add two special tokens in the target sentences (start_of_
stream/end_of_stream).

data['target'] = '<sos> ' + data['target'] + ' <eos>'

data.target[100]

>> '<sos> Je payai. <eos>'

Let’s extract the vocabulary size of the sentences in the source and target corpora:

# Extract the vocabulary of the source/target sentences.

src_voc = sorted(list(data['source'].str.split(' ', 
expand=True).stack().unique()))

trg_voc = sorted(list(data['target'].str.split(' ', 
expand=True).stack().unique()))

# Get the vocabulary size for the source/target sentences. 
Increase by one for the padding token.

src_voc_size = len(src_voc) + 1

trg_voc_size = len(trg_voc) + 1

print("Vocabulary size of the source sentences:", src_voc_size)

print("Vocabulary size of the target sentences:", trg_voc_size)

>>

Vocabulary size of the source sentences: 2504

Vocabulary size of the target sentences: 4818

Next, we must obtain the maximum length of the sentences in each case:

# Extract the maximum sentence length in the source/target 
sentences.

max_src_len = max([(len(s.split(' '))) for s in 
data['source']])
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max_trg_len = max([(len(s.split(' '))) for s in 
data['target']])

print("Maximum length of the source sentences:", max_src_len)

print("Maximum length of the target sentences:", max_trg_len)

>>

Maximum length of the source sentences: 5

Maximum length of the target sentences: 12

The previous statistics are essential as they let us configure the dimensions of the different units of 
the model. Recall that the power of seq2seq models lies in their ability to handle input and output 
sequences of different lengths.

Another step to facilitate data processing is to build word-to-index and index-to-word dictionaries. 
The first allows the input words to be transformed into numerical values for the encoder. Similarly, 
we need a dictionary to map numerical values to the output words for the decoder. The following 
code shows how:

# Create the word-to-index dictionary for the source/target 
tokens.

# Zero index reserved for the padding token.

src_word2idx = dict([(word, idx+1) for idx, word in 
enumerate(src_voc)])

trg_word2idx = dict([(word, idx+1) for idx, word in 
enumerate(trg_voc)])

print(trg_word2idx['Non'])

>> 675

And here is the code for the index-to-word dictionary:

# Create the index-to-word dictionary for the source/target 
tokens.

src_idx2word = dict([(idx, word) for word, idx in src_word2idx.
items()])

trg_idx2word = dict([(idx, word) for word, idx in trg_word2idx.
items()])

print(trg_idx2word[675])

>> Non
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The encoder receives as input an array whose size is 8000×5 (corpus samples multiplied by the maximum 
sentence length). For the decoder, the input is an 8000×12 array. The elements of the rows contain the 
numerical identifier of each word in the sentence using the word-to-index dictionary. For example, the 
numerical representation of the phrase I play is [165, 1772, 0, 0, 0] because the value 165 corresponds 
to the word I and the value 1772 to the word play. In general, the vectors of the sentences are sparse 
as they contain many zeros. Later, we will see that the model’s output consists of a dense layer with 
softmax activations, so the decoder’s output should be in the form of one-hot vectors. Specifically, 
each target word is represented by a one-hot vector whose size is 4818 (vocabulary size), which is 
why each target sentence requires 12 (maximum sentence length) of these vectors. In the end, an 
array of 8000×12×4818 can include the whole target sentence set.

Now, let’s examine these steps by specifying the format of the input and output data:

import numpy as np

# The input/output data of the model.

enc_input_data = np.zeros((len(data['source']), max_src_len), 
dtype='float32')

dec_input_data = np.zeros((len(data['source']), max_trg_len), 
dtype='float32')

dec_output_data = np.zeros((len(data['source']), max_trg_len, 
trg_voc_size), dtype='float32')

Observe how max_src_len and max_trg_len determine the size of the created arrays. Next, 
we iterate over the whole dataset, transforming words into numerical values for the encoder’s and the 
decoder’s input while creating the one-hot array for the decoder’s output:

# Iterate over the whole dataset.

for i, (src_sentence, trg_sentence) in 
enumerate(zip(data['source'], data['target'])):

    # Create the input for the encoder.

    for j, word in enumerate(src_sentence.split()):

        enc_input_data[i, j] = src_word2idx[word]

    # Create the input/output for the decoder.

    for j, word in enumerate(trg_sentence.split()):

        # Skip the '<eos>' word in the decoder input.

        if j < len(trg_sentence.split())-1:

            dec_input_data[i, j] = trg_word2idx[word]



Introducing sequence-to-sequence learning 251

        # Skip the '<sos>' word in the decoder output.

        if j > 0:

            dec_output_data[i, j-1, trg_word2idx[word]] = 1.0

Now, we can set up the architecture of the training model, which is a graph of layers. Let’s examine 
each step:

1.	 First, the input layers of the encoder and the decoder are constructed:

from keras.layers import Input, LSTM, Embedding, Dense

from keras.models import Model

# Create the input layers for the encoder/decoder.

enc_input = Input(shape=(None,), dtype='float32',)

dec_input = Input(shape=(None,), dtype='float32',)

2.	 Instead of feeding the input layers with the previously created sparse arrays, we incorporate 
word embedding. Recall the discussion in the Extracting word embedding representation section 
of Chapter 3, Classifying Topics of Newsgroup Posts, concerning the competitive benefits of this 
technique, such as its ability to retain the relationships among words. For this reason, we add 
an embedding layer after the input ones. Each of the 2504 words of the source language and 
the 4818 words of the target one is embedded in a 256-dimensional space:

# Create the embedding layers for the encoder/decoder.

embed_layer = Embedding(src_voc_size, 256, mask_
zero=True)

enc_embed = embed_layer(enc_input)

embed_layer = Embedding(trg_voc_size, 256, mask_
zero=True)

dec_embed = embed_layer(dec_input)

3.	 The LSTM layers receive the embedding of each word and perform the seq2seq learning, as 
described earlier. Note that during the training phase, we are only interested in the states of the 
encoder and the output of the decoder. The output of the encoder and the states of the decoder 
are not used. In Python, the _ symbol signifies that specific values can be ignored:

# Create the LSTM layers for the encoder/decoder.

enc_LSTM = LSTM(256, return_state=True)

_, state_h, state_c = enc_LSTM(enc_embed)

dec_LSTM = LSTM(256, return_state=True, return_
sequences=True)

# The initial states of the decoder are the output from 
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the encoder.

dec_output, _, _ = dec_LSTM(dec_embed, initial_
state=[state_h, state_c])

4.	 Finally, the softmax layer in the output of the decoder provides probabilities for each of the 
4818 words in the target language. In this way, the most probable word is emitted by the 
decoder at each timestep:

# Create the output layer for the decoder.

dec_dense = Dense(trg_voc_size, activation='softmax')

dec_output = dec_dense(dec_output)

Now that all the pieces are in place, we can start constructing and training the complete 
encoder/decoder model.

Training the model

As mentioned several times, the training model takes two inputs (enc_input and dec_input) 
and emits one output (dec_output):

# Create and compile the model.

model = Model([enc_input, dec_input], dec_output)

model.compile(optimizer='rmsprop', loss='categorical_
crossentropy', metrics=['accuracy'])

model_params = np.sum([np.prod(v.get_shape()) for v in model.
trainable_weights])

print("Number of trainable parameters:", model_params)

>> Number of trainable parameters: 4163282

As a measure of the complexity of the model, we print the number of its trainable parameters. In total, 
4163282 parameters must be estimated. Quite a lot!

Now, let’s visualize the different layers of the training model that we created in the previous section:

from keras.utils.vis_utils import plot_model

# Plot the model.

plot_model(model, to_file='./images/model_plot.png', show_
shapes=True, show_layer_names=True, dpi=100)
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The output is illustrated in Figure 6.24:

Figure 6.24 – The encoder/decoder model for training

The input, embedding, and LSTM layers appear in both the encoder and the decoder parts. The arrows 
signify the flow of data from each layer to the next, while the None elements represent dimensions 
where the shape is not explicitly set, and for that reason, it’s unknown. For example, the only restriction 
for the input to the lstm layer is that it should consist of embeddings of size 256. After the whole 
architecture is in place, we start the training process by fitting the data to the model:

# Fit the data to the model.

model.fit([enc_input_data, dec_input_data], dec_output_data, 
batch_size=128, epochs=100, validation_split=0.2, shuffle=True)

>>

...

Epoch 99/100

50/50 [==============================] - 6s 115ms/step - loss: 
0.0903 - accuracy: 0.8755 - val_loss: 2.1945 - val_accuracy: 
0.3988

Epoch 100/100

50/50 [==============================] - 6s 115ms/step - loss: 
0.0897 - accuracy: 0.8756 - val_loss: 2.2089 - val_accuracy: 
0.3998
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According to the validation_split parameter, 80% of the bilingual pairs are used for training, 
while the other 20% are used for testing. After 100 epochs, we achieve an accuracy of around 88%. 
Notice that we reached this rather good score without the need to annotate the training data in any 
way. No domain knowledge of the languages involved was necessary, and a simple bilingual corpus 
with pairs of sentences was enough to train the model. In the following section, we will test the 
implemented MT system.

Testing the model

Before using the trained model for inference, we must change its architecture so that the output of 
each decoder timestep becomes an input to the subsequent one. The encoder remains unchanged. 
Let’s examine the appropriate steps:

1.	 First, we must create the encoder part and specify that the input of the decoder is the hidden 
(dec_state_in_h) and cell (dec_state_in_c) states. We must also define an embedding 
layer for the input word (dec_embed_2):

# Model to encode the input.

Enc_model = Model(enc_input, [state_h, state_c])

# The hidden and cell states of the decoder at each step.

Dec_state_in_h = Input(shape=(256,))

dec_state_in_c = Input(shape=(256,))

# Set the embedding layer.

Dec_embed_2 = embed_layer(dec_input)

2.	 The LSTM unit (dec_LSTM) is configured based on the previous layers and reuses its weights 
from the training phase. To make predictions, the decoder’s output is passed through a dense layer:

# Set the LSTM layer.

Dec_output_2, dec_state_out_h, dec_state_out_c = dec_
LSTM(dec_embed_2, initial_state=[dec_state_in_h, dec_
state_in_c])

# Set the output layer for the decoder.

Dec_output_2 = dec_dense(dec_output_2)
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3.	 Now, let’s create the decoder model:

decoder_model = Model([dec_input] + [dec_state_in_h, 
dec_state_in_c], [dec_output_2] + [dec_state_out_h, dec_
state_out_c])

4.	 Next, we must visualize the architecture of the altered decoder:

plot_model(decoder_model, to_file='./images/inference_
model_plot.png', show_shapes=True, show_layer_names=True, 
dpi=100)

We get the following output:

Figure 6.25 – The decoder model for inference

Now, it’s time to extract a translation for a given sentence. Here, we must include the necessary steps 
in the getTranslation method and present them in detail. First, the method receives the index 
part of an example in the dataset:

# Translate an input sentence.

Def getTranslation(index):
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    translation = word = ''

    # Choose a sequence from the data set.

    Source_seq = enc_input_data[index:index+1]

Next, the encoder creates the context vector from the input:

    # Get the initial input states for the decoder.

    States_h_c = enc_model.predict(source_seq)

    # The first input token to the decoder is start_of_stream.

    Token = np.zeros((1,1))

    token[0, 0] = trg_word2idx['<sos>']

The decoding process is a loop that iterates until we hit <eos> or until a threshold has been reached. 
In this example, the decoding stops when the length of the target sentence exceeds 100 characters. 
At each timestep, the decoder outputs a one-hot encoded vector to which we apply np.argmax to 
get the maximum value:

    # Start the decoding process.

    While (word != '<eos>' and len(translation) <= 100):

        # Predict the next token and states.

        Output, state_h, state_c = decoder_model.
predict([token] + states_h_c)

        # Store the emitted token and the states for the next 
iteration.

        Idx = np.argmax(output[0, -1, :])

        token[0, 0] = idx

        states_h_c = [state_h, state_c]

Let’s extract the corresponding word from the dictionary using idx:

        # Extract the emitted word.

        Word = trg_idx2word[idx]

        translation += ' ' + word

    return translation
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Finally, it’s time to call the method:

print("Input sentence:", data['source'][i])

print("Reference translation:", data['target'][i].
replace("<sos>","").replace("<eos>",""))

print("Hypothesis:", getTranslation(1308)[:-6])

>>

Input sentence: Seriously?

Reference translation: C'est vrai ?

Prediction:  Vraiment ?

The model’s prediction seems incorrect as it differs from the reference translation. In reality, however, 
the English input sentence can be translated equally into both versions in French. Thus, we should 
feel happy with the outcome of our model!

With this presentation of seq2seq models, we conclude our discussion of many important methods 
for MT; in Chapter 7, Summarizing Wikipedia Articles, we will encounter another appropriate method 
for MT. Starting from RBMT systems, where humans are responsible for crafting the proper rules 
for translation, we concluded by presenting neural architectures. The second approach aims to 
create translation models directly from the data without exploiting any particular knowledge of the 
languages involved.

Throughout this book, we will discuss the importance of assessing the quality of the developed systems 
and, more importantly, comparing competing implementations. MT cannot be an exception to this 
rule. The following section introduces the last topic of this chapter: the evaluation methodology and 
the relevant metrics for MT.

Measuring translation performance
The most straightforward way to evaluate an MT system is to ask humans (preferably, professional 
translators) to assign a score to each output. However, this leads to other problems, which include the 
subjectiveness of the evaluator, the number of sentences that can be assessed, potential costs, and so 
forth. As in every machine learning task, we can incorporate automatic metrics to assess the quality 
of the output. Accuracy, precision, recall, and F-score were encountered in Chapter 2, Detecting Spam 
Emails, so let’s see how they can be incorporated to evaluate an MT system.
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Consider the source phrase in English and in the rain your letters flow in the rivers, which has a reference 
translation in French of et sous la pluie tes lettres coulent dans les rivières. Let’s assume that the system 
outputs the prediction sous la pluie les lettres coulent dans la rivière, as illustrated in Figure 6.26:

Figure 6.26 – Reference and predicted translation example

Here, we can make the following calculations:

It is unclear, however, how to interpret these values under the prism of MT. In this case, a more 
appropriate metric for evaluating the quality of MT systems is the BiLingual Evaluation Understudy 
(BLEU) score. Using BLEU, we compare the generated prediction to a reference sentence by counting 
matching n-grams in both cases. Specifically, for each n-gram whose size is between 1 and 4 in the 
prediction, we count the number of times they appear in the reference. Notice that the order of the 
n-grams does not play any role. A brevity penalty is also added to the score to prevent very short 
candidates from receiving too high BLEU values. This way, predictions closer to the length of the 
reference translation get a higher score. The formula of BLEU is as follows:

A score of 1 indicates a perfect match, while a score of 0 indicates a perfect mismatch. The benefits 
of BLEU are that it is easy to apply and understand and correlates well with human evaluation. The 
more common patterns that are found in both the prediction and reference, the more confident we 
are about the translation. In Table 6.2, we are calculating BLEU step by step using two hypothetical 
predictions of an MT system:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
#𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 6

9 = 67% 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
#𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

6
10 = 60% 

F--score = 2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 2 ∗ 0.67 ∗ 0.6

0.67 + 0.6 = 63% 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = min⁡(1, #𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝#𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)(∏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖
4

𝑖𝑖=1
)
1
4 
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Table 6.2 – BLEU score for two possible predictions

According to the table, Prediction 2 receives a higher score and is preferable compared to Prediction 
1. Notice that the absence of one common 4-gram in the first case is sufficient to yield a score of 0%. 
In practice, when we want to compare two different MT models, we calculate BLEU using a large 
corpus of annotated examples and pick the model with the highest overall score.

In the following code snippet, we are using Python to perform a similar calculation:

from nltk.translate.bleu_score import sentence_bleu

hypothesis = getTranslation(1006)[:-6].split()

reference = data['target'][1006].replace("<sos>","").
replace("<eos>","").split()

# Calculate the BLEU score.

bleu = sentence_bleu([reference], hypothesis, weights=(1, 1, 
1))

The weights parameter determines which n-grams should be used to calculate BLEU. This example 
only includes uni-grams, bi-grams, and tri-grams:

print("Input sentence:", data['source'][1006])

print("Reference translation:", reference)

print("Hypothesis:", hypothesis)

print("BLEU score:", bleu)

>>

Input sentence: I relaxed.

Reference translation: ['Je', 'me', 'suis', 'détendue.']

Hypothesis: ['Je', 'me', 'suis', 'détendu.']

BLEU score: 0.25
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According to the output, the prediction differs from the reference translation by one word (détendu), 
and the BLEU score is 0.25. Finally, we can verify the calculation by counting the corresponding 
n-grams and applying the formula:

In this section, we revisited different metrics from previous chapters to assess MT performance. Then, 
we introduced BLEU, a more pertinent score for these types of systems. Using specialized performance 
benchmarks is a good practice, as they allow you to assess the most relevant characteristics of any 
machine learning implementation. We will encounter a few other examples in the rest of this book.

Summary
In this chapter, we diverted from the standard presentation flow we adopted in the previous chapters, 
where we performed exploratory data analysis, created the machine learning models, and evaluated 
their performance. Instead, the content unfolded while following the historical evolution of MT 
systems so that you could become acquainted with basic NLP techniques that find applicability in 
a gamut of tasks. For example, POS tagging and NER are typical methods for categorizing words in 
a sentence. In the same way, different grammars can be used either for parsing an input phrase or 
generating an output sentence.

We contrasted two fundamental approaches for creating MT applications, the first of which relies 
on human knowledge to derive the translation rules. Conversely, data is the driving force for model 
creation in the second case. Finally, an in-depth presentation of seq2seq models revealed their power 
to efficiently convert a source sequence into a target.

In the final section, we focused on how specific metrics can be used to evaluate machine translation 
systems. Finding specialized scores such as BLEU provides a better way to compare different MT 
implementations. In the next chapter, we will deal with the topic of text summarization.

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
1 × (34 ×

2
3 ×

1
2)

1
4 = 0.25 
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Summarizing Wikipedia 

Articles

There is a commonly referred-to analogy that data is to this century what oil was to the previous one. 
Human text is part of this valuable resource, which, contrary to oil, keeps increasing. Undoubtedly, 
the amount of textual data available from various sources has exploded. With the advent of Web 2.0, 
online users ceased to be merely consumers of this material and became content creators, further 
enhancing the abundance of online text data. But the more content that is available online, the less 
easy it is to discover and consume the most important information efficiently. Automatically extracting 
the gist of longer texts into an accurate summary and thus eliminating irrelevant content is urgently 
needed. Once more, machines can undertake this role.

This chapter introduces another challenging topic in natural language processing (NLP) and demystifies 
methods for text summarization. To implement pertinent systems, we exploit data coming from the 
web. In this respect, we examine techniques for accessing and automatically parsing web resources. 
Besides the standard text summarization methods, we delve into a state-of-the-art architecture that 
provides exceptional performance in many real-world applications. The specific topology extends 
the sequence-to-sequence (seq2seq) architectures we have already discussed and combines many 
concepts encountered throughout the book. Finally, as we did in previous chapters, we discuss the 
metrics to assess the performance of relevant systems.

By the end of the chapter, you will have the generic skill of gathering text data from any online resource, 
but more importantly, you will be able to apply more complex techniques for seq2seq learning.

In this chapter, we will go through the following topics:

•	 Discussing different techniques for text summarization

•	 Applying web crawling and data scraping

•	 Understanding related web technologies



Summarizing Wikipedia Articles262

•	 Implementing state-of-the-art architectures for text summarization

•	 Evaluating relevant systems using the appropriate metrics

Technical requirements
The chapter’s code has been truncated in certain parts to facilitate reading the content. However, the 
whole code is available as different Jupyter notebooks at the book’s GitHub repository: https://
github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/
tree/main/chapter-07.

Understanding text summarization
With the burden of a busy daily schedule, we all seek to reduce the time spent reading text data. Take 
a moment to contemplate the number of emails, reports, news articles, tweets, blog posts, and so 
on you confront in 24 hours. The human brain employs different strategies to compensate for this 
challenge, such as skipping sentences in the text or searching for specific keywords before focusing 
on the content. Many studies have examined this phenomenon, and one of the most cited ones refers 
to how people in the west read the content of a web page. Using eye-tracking techniques, researchers 
from the Nielsen Norman Group (https://www.nngroup.com/articles/f-shaped-
pattern-reading-web-content-discovered/) showed that humans follow a reading 
pattern resembling the letter F, as illustrated in Figure 7.1:

Figure 7.1 – F-shaped reading pattern of a web page

https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-07
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-07
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-07
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content-discovered/
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content-discovered/
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The reading usually starts at the upper part of the content area (point 1). Then, it follows a horizontal 
path (until point 2)—the top bar of the letter F. Next, the reader, moves down the page a bit, scanning 
for an interesting initial sentence. When this happens (point 3), a typically shorter reading continues 
horizontally (until point 4), creating the lower bar of the letter. Finally, a vertical scan on the left part of 
the page forms the letter F’s stem (point 5). Why does this matter for a web designer? Simply because 
they can prioritize the content on a page according to the order most visitors scan it. For example, 
they can place the most important content at the top.

The previous finding is just one of the many examples demonstrating people’s inherent tendency to 
reduce their information load by attending to specific parts of their visual stimuli. It is, therefore, not 
a surprise that companies seize the opportunity to offer products that alleviate this load. The current 
chapter focuses on text summarization, which is the process of condensing a piece of text into a 
shorter version while preserving critical information and the overall meaning of the original. Similar 
to machine translation, the task is not a simple text-to-text transformation because context is essential 
to fluently pass the intended message in the output summary.

The task becomes even more challenging as other constraints must be addressed. For instance, while 
summarizing a scientific publication about a new medical treatment, we need to consider the target 
audience for the summary. Should we include specialized terms in the output? Probably yes, to inform 
scientific peers of the publication’s key points. Conversely, a summary for a news post targeting a 
general audience should present the most critical findings in casual language.

In school, we were often asked to summarize large documents and demonstrate our capacity to 
understand and extract the most valuable information from the text. Some students would highlight 
specific parts of the original document and include verbatim reproductions of these fragments in the 
output summary. Others aimed to comprehend the content more deeply and identify the most crucial 
information. Then, they had to formulate sentences from scratch that conveyed the original meaning. 
As you might expect, the second approach is the most challenging option.

Based on this analogy, there are two types of text summarization: extractive and abstractive. Figure 
7.2 shows an example for each case using the same input:
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Figure 7.2 – An example of extractive and abstractive summarization

This contrived example shows that text summarization is a non-trivial task. The highlighted text in the 
input is used for the extractive summary, but it’s unclear how we chose it in the first place. Moreover, 
creating the formulation in the abstractive summary is even more obscure. Besides the different 
techniques for text summarization, we discuss web scraping and how it can assist in accumulating 
online data. In this respect, we provide a very brief presentation of relevant web technologies to ensure 
that everybody is on the same page. So, let’s begin with this exciting topic!

Introducing web scraping
Throughout the book, we repeatedly see data’s value in creating intelligent systems. None of the 
discussions presented so far would make any sense without its presence. For instance, we incorporated 
publicly available corpora and built-in datasets from Python libraries in various case studies. In 
reality, however, suitable corpora are rarely available for free, and it’s the data scientist’s primary 
responsibility to harvest them. The world wide web (WWW) is a goldmine where we can resort to 
finding or augmenting our datasets using web scraping, the process of collecting and parsing raw 
data from the web. Afterward, the data is converted into the appropriate format to proceed with the 
subsequent analysis.

For this task to succeed, web crawlers are used to retrieve the requested content. These are also known 
as spiders because they crawl all over the web, just as real spiders crawl on their spiderwebs. The 
specific processing is performed in three steps:

1.	 Initially, the crawler is seeded with manually selected URLs in a list. Then, the list is iteratively 
grown as more pages need to be visited.

2.	 The crawler performs a fetch for each URL, and its content is scraped. Any new links are added 
to the list of URLs, and the specific page is marked as crawled.

3.	 The crawler ensures that there are no self-referential loops and that the same link is not 
visited twice.
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Interesting fact
The web crawlers used by search engines cannot possibly index every URL. This is because the 
web comprises well over a trillion distinct addresses, and repeatedly searching for visited sites 
would be a nightmare. So, instead, these crawlers incorporate a technique called Bloom filter 
to test whether an element is a member of the visited addresses.

The filter is an array of bits that are set to 0 initially. Then, we hash the URL and calculate the 
modulo of the result by the array’s length. The outcome is the position of the array that we set 
to 1. It signifies that the specific URL has been visited. Although this technique is not perfect, 
as two different URLs can have the same hash, it saves significant time and space during the 
crawling process. In practice, more than one hash function is used, setting more bits to 1. Then, 
the lookup for a URL yields a 1%-2% error.

To understand these concepts, let’s visualize the crawling process as an upside-down tree, shown in 
the left plot of Figure 7.3:

Figure 7.3 – Web traversal strategies: depth-first (middle) and breadth-first (right)

We begin the crawling from the tree’s trunk—in this case, URL A, and move to each branch, extending 
out the URLs linked from the previous ones. However, from this visualization, the processing order 
of the different nodes remains unclear.

Implementing a web crawler typically dictates choosing a traversal strategy, and the two most prominent 
options are the depth-first (DFS) and breadth-first (BFS) algorithms. In the DFS case (middle plot), 
the strategy is first to retrieve all the URLs in the maximum depth before proceeding to the URL at the 
same level. So, in our example, the URLs are crawled in the following order: ABECFDGILJHKMON. 
Conversely, in the BFS case (right plot), we first retrieve all the URLs in the current depth before 
proceeding to the next level. The order now is ABCDEFGHIJKLMNO. These two algorithms are 
extensively used in many computer science applications, especially when a search problem is involved. 
Depending on where the best solution resides, it might take more or less time to discover it following 
either DFS or BFS. Consider, for example, the number of steps reaching L in both strategies. In this 
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example, DFS finds the specific node in fewer steps than BFS. Finally, notice that the tree is not static 
during web crawling but constantly updated with new pages to be visited.

Unfortunately, our problems do not finish in the crawling order of the different pages. The web scraping 
task is far from easy, as websites come in different shapes and forms. Moreover, it might be in the self-
interest of the site to block the scraping process to protect its data and avoid overwhelming the server 
with requests. It is prevalent that a web server stops responding after multiple requests from the same 
source. Additionally, the completely automated public turing test to tell computers and humans 
apart (CAPTCHA), despite being annoying for end users, helps verify that the request came from an 
actual human, not an internet bot. CAPTCHAs are one of the most popular anti-scraping techniques 
available. As a way to assist the scraping process, many websites include a file called robots.txt 
(for example, https://edition.cnn.com/robots.txt) that explicitly dictates which parts 
of the site cannot be crawled. The robots.txt plain text file follows the robots exclusion standard 
(https://en.wikipedia.org/wiki/Robots_exclusion_standard) and consists of 
one or more rules.

An example is the following rule that disallows access to the shown folder of the web server: Disallow: 
/WEB-INF/. The Robot Exclusion Standard is purely advisory, and most of the time, no repercussions 
are applied by the website owner. Nevertheless, do not be surprised if the latter decides to block your 
crawler when disrespecting the standard. In the next section, we create a spider to implement a few 
of these concepts.

Scraping popular quotes

In this exercise, we use text data from http://quotes.toscrape.com, a website that includes 
popular quotes from famous people. The site was created explicitly for scraping purposes, so there are 
no concerns about violating any usage terms. The web page illustrated in Figure 7.4 is well organized 
and includes groups of quotes, along with a link to the author’s biography, and various tags:

Figure 7.4 – Web page retrieved from quotes.toscrape.com

https://edition.cnn.com/robots.txt
https://en.wikipedia.org/wiki/Robots_exclusion_standard
http://quotes.toscrape.com
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A web scraper requires access to the web page’s content, and the hypertext markup language (HTML) 
is the standard markup language to provide this information. An HTML page contains elements that 
tell the browser how to display its contents on the screen. Figure 7.5 shows part of the HTML code 
for the previous example:

Figure 7.5 – The HTML code behind the quotes.toscrape.com page

At first glance, the page’s text seems chaotic, but it’s actually very well structured. Looking at the 
different elements, we only need to scrape the parts that contain useful information. For example, 
to get the text of the quote, we need to find a div element of the quote class that includes a span 
element of the text class. Next, we see how to perform these steps programmatically.



Summarizing Wikipedia Articles268

The scrapy framework is an elegant way to implement spiders in Python for large-scale web 
scraping. In the code of the quote-scraper.ipynb notebook, we create a crawler and set the 
start URL, like so:

import scrapy

# Create a spider for scraping quotes.

class QuotesSpider(scrapy.Spider):

    name = 'quote_spider'

    start_urls = ['http://quotes.toscrape.com']

Inside the crawler’s class, we define a method to be called every time a page needs to be parsed. 
Observe in the for loop how we scrape the relevant information for each quote—namely, text, 
author, and tags:

    # Define its parse method.

    def parse(self, response):

        print(f"Visiting: {response.url}")

        # Parse the info for each quote.

        for quote in response.css("div.quote"):

            text = quote.css("span.text::text").get()

            author = quote.css("small.author::text").get()

            tags = quote.css("div.tags a.tag::text").getall()

            print(dict(text=text, author=author, tags=tags))

We parse the information using selectors, which are patterns that match against elements in a document. 
These are a core component of cascading style sheets (CSS), a language describing the rendering of 
HTML documents on the screen. While HTML is responsible for the structure of a web page—for 
instance, using paragraphs, headings, sections, and so forth—CSS takes care of its look and feel, such 
as changing the background color or the font type.

An example of a selector is this one: div.tags a.tag::text. The pattern matches the div 
element of the tag class, including the a anchor of the tag class, and extracts the corresponding 
text value.

Let’s create and start a crawler process using QuotesSpider:

from scrapy.crawler import CrawlerProcess
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# Create a crawler process using the quote spider.

process = CrawlerProcess({

    'USER_AGENT': 'Mozilla/4.0 (compatible; MSIE 7.0; Windows 
NT 5.1)'

})

# Start the crawling.

crawler = process.create_crawler(QuotesSpider)

process.crawl(crawler)

process.start()

>>

Visiting: http://quotes.toscrape.com

{'text': '"The world as we have created it is a process of 
our thinking. It cannot be changed without changing our 
thinking."', 'author': 'Albert Einstein', 'tags': ['change', 
'deep-thoughts', 'thinking', 'world']}

...

The output is a JSON-formatted string with three key-value pairs. Compare this result with the 
browser’s output in Figure 7.4 to verify that they are the same.

Before we close out the section, here is a list of typical data formats that you need to know, along with 
an example:

•	 JavaScript Object Notation (JSON):

{ "title": "ML4Text", "author": "NT"}

•	 Extensible Markup Language (XML):

<entry> <title>ML4Text</title> <author>NT</author></entry>

•	 Comma-Separated Values (CSV):

title, author

ML4Text, NT

•	 Tab-Separated Values (TSV):

title          author

ML4Text        NT

The example of this section demonstrated a spider that was used to download and scrape a single 
web page. But as we already know, web crawlers are crafted to extract links on the page and iteratively 
crawl them. This is the topic of the next section.
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Scraping book reviews

As with the quotes example, we crawl a website with book reviews, including 152 book items split into 
8 web pages (http://books.toscrape.com/). The created spider is seeded with a selected URL 
and is responsible for identifying and iteratively visiting all embedded links in the URL. A screenshot 
of the selected site is shown in Figure 7.6, which corresponds to the first of eight relevant pages. To 
move to the next page, we must click on the next button on the lower-right part of the screenshot. 
The spider must extract the relevant HTML code to perform the navigation step programmatically:

Figure 7.6 – One out of eight pages from the books.toscrape.com site

Item in scrapy is a logical grouping (container) of extracted data points from a website. In the 
code of the text-summarization.ipynb notebook, we define a BookItem class to read the 
title and the product description of a book:

import scrapy

from scrapy.loader.processors import MapCompose, TakeFirst

# Remove the double quotes from the input.

def remove_quotes(input):

    input = input.replace("\"", "")

    return input

# Create the book item for scraping.

class BookItem(scrapy.Item):

    # The item consists of a title and a description.

http://books.toscrape.com/
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    title = scrapy.Field(output_processor=TakeFirst())

    product_description = scrapy.Field(input_
processor=MapCompose(remove_quotes), output_
processor=TakeFirst())

Observe the two fields—title and product_description—defined inside the BookItem 
class. TakeFirst and MapCompose are built-in processors that deal with the extracted data as 
soon as it’s received. For example, the latter uses the remove_quotes method to remove quotes 
from the input. Let’s now create a crawler and set the start URL:

from scrapy.loader import ItemLoader

# Create a spider for scraping book info.

class BookSpider(scrapy.Spider):

    name = 'book_spider'

    allowed_domains = ['books.toscrape.com']

    start_urls = ['https://books.toscrape.com/catalogue/
category/books/default_15/index.html']

    custom_settings = {

        "FEEDS" : { "books.json": { "format": "json", 
"overwrite": True}}

    }

Notice that the output of the scraping process is stored in the books.json file. The parse method 
that follows iterates over all book items on a specific page and calls the parse_book_info method 
to handle each one of them:

    # Parse the info for each page with books.

    def parse(self, response):

        # Iterate over all products on the page.

        for article in response.css("article.product_pod"):

            # Get the url for one book.

            book_url = article.css("div > a::attr(href)").get()

            if book_url:

                # Parse the info for the specific book.

                yield response.follow(
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                    url=book_url,

                    callback=self.parse_book_info,

                    dont_filter=True)

        # Go to the next books page.

        next_url = response.css("li.next > a::attr(href)").
get()

        if next_url:

            yield response.follow(url=next_url, callback=self.
parse)

Moving each time to the next book page, we need to extract the link and store it in the next_url 
variable. For this reason, we use the appropriate CSS selectors until the eight pages are consumed.

The parse_book_info method that follows provides a convenient mechanism for populating 
scraped items using ItemLoader. The latter can automatize common tasks such as parsing the 
raw data before assigning it. Conceptually, Item provides the container of scraped data, while 
ItemLoader provides the mechanism for populating that container:

    # Callback method for scraping a specific book's page.

    def parse_book_info(self, response):

        item_loader = ItemLoader(item=BookItem(), 
response=response)

        item_loader.add_css('title', "div > h1::text")

        item_loader.add_css('product_description', 
"div#product_description + p::text")

        return item_loader.load_item()

As in the previous section, we create and start a crawler process using BookSpider:

from scrapy.crawler import CrawlerProcess

# Create a crawler process using the book spider.

process = CrawlerProcess({

    'USER_AGENT': 'Mozilla/4.0 (compatible; MSIE 7.0; Windows 
NT 5.1)'

})
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# Start the crawling.

crawler = process.create_crawler(BookSpider)

process.crawl(crawler)

process.start()

Let’s verify that everything worked as expected:

# Print statistics from the scraping process.

stats_dict = crawler.stats.get_stats()

stats_dict

>>

...

 'request_depth_max': 8,

 'item_scraped_count': 152,

...

Indeed, 8 pages are downloaded, 152 book items are scraped, and their data is stored in the books.
json file. Beware that running the same code on your side might yield a different order of the book 
items inside the file. The reason is that the scrapy process is asynchronous, meaning that the crawler 
continues execution after initiating the request to the web server and processes the result whenever 
the latter makes it available. So, although the requests are made in a particular order, the responses 
can be received differently. We conclude the discussion on web crawling with one more technique.

Scraping Wikipedia articles

XML Path Language (XPath) is an expression language for selecting tags in XML documents and 
HTML. It is an alternative to the CSS selectors, and this section provides just a flavor of its usage. As 
before, we implement a spider in the wikipedia-scraper.ipynb notebook, set the start URL, 
and define a parse method:

import scrapy

# Create a spider for scraping Wikipedia articles.

class WikipediaSpider(scrapy.Spider):

    name = 'wikipedia_spider'

    allowed_domains = ['en.wikipedia.org']

    start_urls = ['https://en.wikipedia.org/wiki/Athens']

    # Parse the info for a specific page.
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    def parse(self, response):

        print(response.xpath("//span[@class='mw-headline']/
text()").getall())

The //span[@class='mw-headline']/text() XPath is equivalent to the span.
mw-headline::text CSS selector. Both extract the text of a span element with the mw-headline 
class. Inspecting the page’s HTML code reveals that this element contains the titles of the headlines. 
Notice that CSS selectors are usually faster and easier to learn than XPath, which is more flexible in 
constructing scrape queries.

Then, starting the crawler yields all headlines for the city of Athens Wikipedia article specified in 
the start_urls variable:

...

# Start the crawling.

crawler = process.create_crawler(WikipediaSpider)

...

>> ['Etymology and names', 'History', 'Geography', 
'Environment', 'Safety', 'Climate', 'Locations', 
'Neighbourhoods of the center of Athens (Municipality 
of Athens)', 'Parks and zoos', 'Urban and suburban 
municipalities', ..., 'Museums', 'Tourism', 'Entertainment 
and performing arts', 'Sports', 'Overview', 'Sports clubs', 
'Olympic Games', '1896 Summer Olympics', '1906 Summer 
Olympics', '2004 Summer Olympics', 'See also', 'References', 
'External links']

This section concludes the discussion on web crawling and scraping. Both methods allow the acquisition 
of valuable data for our projects. The presented code is generic and can be applied whenever we need 
to augment our dataset from the web. However, some restrictions for accessing certain websites or 
using their resources may apply. Therefore, you must always read the site’s terms of use to verify the 
usage rights and what you are entitled to do with the offered data. Moreover, you must consult the 
robots.txt file to identify which parts of the site cannot be crawled. Next, we move to the main 
topic of this chapter: introducing techniques for extractive text summarization.

Performing extractive summarization
In the chapter’s introduction, we mentioned that extractive summarization identifies important words 
or phrases and stitches them together to produce a condensed version of the original text. In this 
section, we use the previously created books.json file and employ different methods to extract 
summaries for an input document. Due to space limitations and the need to focus on state-of-the-art 
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techniques, we do not present the theory behind the methods. However, there is a plethora of online 
resources that can be consulted. A good starting point is the following link: https://miso-
belica.github.io/sumy/summarizators.html.

Let’s begin by loading the data from the file and printing a few examples:

import pandas as pd

df = pd.read_json('books.json')

df.head()

>>  title                    product_description

0   Tracing Numbers on...    Start preparing children for ...

1   The Kite Runner          Khaled Hosseini's #1 New York...

2   The Psychopath Tes...    They say one out of every hun...

...

151 A Visit from the G...    Bennie is an aging former pun...

152 rows × 2 columns

Next, we ensure that there are no missing values:

# Remove missing values.

df = df.dropna()

df.shape

>> (151, 2)

The previous output indicates that one of the instances was removed. From 152 rows, we now have 
151. Checking for missing or corrupted data is not only recommended but also requested. We can 
now print a sample description:

print(df['product_description'][136])

>> How can we make intelligent decisions about our increasingly 
technology-driven lives if we don't understand the difference 
between the myths of pseudoscience and the testable hypotheses 
of science?...more

Then, we define a generic method that performs summarization:

stop_words = stopwords.words('english')

# Summarize the input given method and sentence number.

def summarize(input, method, sentence_num, language='english'):

https://miso-belica.github.io/sumy/summarizators.html
https://miso-belica.github.io/sumy/summarizators.html
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    summarizer = method(Stemmer(language))

    summarizer.stop_words = get_stop_words(language)

    # For this summarizer, we can define positive (bonus),

    # negative (stigma), and stop words.

    if isinstance(summarizer, EdmundsonSummarizer):

        # The bonus and stigma sets are empty.

        summarizer.bonus_words = ['']

        summarizer.stigma_words = ['']

        summarizer.null_words = stop_words

    # Extract the summary.

    summary = summarizer(PlaintextParser(input, 
Tokenizer(language)).document, sentence_num)

    return summary

EdmundsonSummarizer is a special case, as we need to set the bonus_words variable, which 
is for words we want to see in the summary and are significant. On the other hand, stigma_words 
are unimportant, while null_words are stop words. This summarizer is the only one having this 
kind of feature. Recall the discussion in the introduction related to the target audience of a summary. 
Having the ability to fine-tune the list of words helps in the creation of customized summaries.

It’s time to extract summaries using seven methods:

for method in [EdmundsonSummarizer, KLSummarizer, 
LexRankSummarizer, LsaSummarizer, LuhnSummarizer, 
ReductionSummarizer, TextRankSummarizer]:

    print('>> ' + method.__name__ + ':')

    summary = summarize(df['product_description'][136], method, 
1)

Let’s print their output on the screen:

    # Print the summary.

    for sentence in summary:

        print(sentence)

    print('')
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>> EdmundsonSummarizer:

How can we make intelligent decisions about our increasingly 
technology-driven lives if we don't understand the difference 
between the myths of pseudoscience and the testable hypotheses 
of science?

...

>> LexRankSummarizer:

Pulitzer Prize-winning author and distinguished astronomer Carl 
Sagan argues that scientific thinking is critical not only to 
the pursuit of truth but to the very well-being of How can we 
make intelligent decisions about our increasingly technology-
driven lives if we don't understand the difference between the 
myths of pseudoscience and the testable hypotheses of science?

...

The result for these two methods seems quite good, don’t you agree? Even the implementation of the 
relevant code was straightforward.

In the following section, we proceed to the second category of summarization systems and introduce 
an advanced seq2seq architecture.

Performing abstractive summarization
Abstractive summarization generates novel sentences by rephrasing the reference and introducing 
new text. This task is quite challenging, and for this reason, more sophisticated methods are required. 
This section adopts a step-by-step approach to present pertinent concepts and techniques. Ultimately, 
we glue all the pieces together in a state-of-the-art model for abstractive summarization. Let’s begin 
with the first concept.

Introducing the attention mechanism

In Chapter 6, Teaching Machines to Translate, we presented an encoder-decoder seq2seq architecture 
suitable for translating sentences from a source language to a target one. A key characteristic of 
the whole pipeline is that the complete input is encoded in a context vector used by the decoder to 
produce a translation. In actual human communications, we tend to listen to the whole sentence 
before responding. Intuitively, the context vector represents this process; it crams the whole input 
into a single vector. But as humans tend to forget important information, so can seq2seq models.

As we saw in the previous chapter, one possible solution is Long Short-Term Memory (LSTM) units 
and Gated Recurrent Units (GRUs), with their distinctive feature of remembering information for 
longer periods. However, when the input sequences become sufficiently large, even these networks 
cease to include all important information in their context vector. The words’ influence at the beginning 
of the input becomes smaller and smaller after the consecutive updates in the intermediate hidden 
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states of the encoder. In the example of Figure 7.7, the word Tom is fed to the encoder during the first 
timestep, but its influence fades after several steps:

Figure 7.7 – Fading influence of the word Tom during encoding

A better approach is to use all hidden states and weigh individual words in the input sequence according 
to their impact on the target. This approach is the basic idea behind attention mechanisms, which 
intuitively resembles the visual attention shown earlier in Figure 7.1. During every timestep, the output 
is not dependent on a single fixed context vector but is a sum of hidden states multiplied by attention 
weights. In this way, the decoder ceases to have limited access to the information provided by the input 
but can selectively attend to the most useful words. Relating to the previous chapter, it’s like reading a 
very long text that needs to be translated. We must be more systematic about the information stored 
in our mind (attend); otherwise, important contexts might be forgotten. Figure 7.8 shows the output 
of the encoder that consists of all hidden states:

Figure 7.8 – The encoder passes all hidden states to the decoder
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So far, we have seen which changes should happen on the encoder part for supporting attention. 
Similarly, the decoder needs to be slightly adapted. For instance, before emitting an output at each 
step, the decoder needs to pay attention to specific words in the input that are important for the 
output. For this reason, it creates a context vector particular to the current decoding step. Figure 7.9 
shows an example:

Figure 7.9 – Attention on the decoder part

In the previous example, the input consists of three words, so the encoder provides three hidden 
states (h1, h2, and h3). Each hidden state vector is multiplied by an attention score to which we have 
previously applied the softmax function. The softmax function converts the attention vector [14, 
11, 11] into a probability distribution of three possible outcomes [0.9, 0.05, 0.05]. Finally, the output 
vectors are added to produce a context vector. Observe how vectors multiplied with a small softmax 
score have attenuated and become grayed out. In the current example, the model attends to the first 
word of the input sentence. The same process is repeated for all timesteps in the decoder with obviously 
different attention scores. The scores are trainable parameters of the model learned during the training 
phase. Notice that there are many types of attention, and this section shows the simplest one. In the 
next section, we stand on the knowledge accumulated so far to dive deeper.
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Introducing transformers

The transformer model replaces the recurrent layers most commonly used in encoder-decoder 
architectures with multi-headed self-attention to boost the performance of deep neural networks 
(DNNs). If the previous sentence sounds cryptic, don’t worry. We’ll clarify all essential elements one 
by one.

The transformer model shown in Figure 7.10 also consists of an encoder and a decoder part:

Figure 7.10 – The transformer model architecture



Performing abstractive summarization 281

Each component consists of a few other sub-components with various connection paths. The architecture 
probably seems daunting, so let’s try to demystify its functionality, starting with the input to the encoder.

Understanding positional encoding

Before examining the encoder part, we need to preprocess the input using word embedding. We 
already know the power behind this word representation, as each element in the embedding vector 
represents a linguistic feature of the word. Word embedding lack a critical element, however. They 
can represent words well but not their position in the sentence. In every language, word order is 
essential, as identical words placed in different positions can change the sentence’s meaning entirely. 
For example, the following phrases include the same words but have completely different meanings: 
Paul bit a dog and A dog bit Paul. When using LSTM, this deficiency of word embedding is not a 
problem, as words are consumed sequentially by the model.

On the other hand, transformers receive all embeddings at once, speeding up the processing time 
but at the expense of losing word order. Positional encoding, the next step in the pipeline, comes as 
a rescue by adding the necessary spatial information about each word in a vector of the same size as 
the embeddings one. After calculating the positional encoding vector, we add it to the embedding 
vector, which now includes an injected pattern with spatial information for the words. Figure 7.11 
shows this process, where 𝑒𝑒𝑖𝑖  and 𝑝𝑝𝑖𝑖  are the 𝑖𝑖𝑡𝑡ℎ  embedding and positional vector, respectively, and 𝑒𝑒𝑝𝑝𝑖𝑖  
is the concatenated vectors emitted from the positional encoding step:

Figure 7.11 – The output of the positional encoding step

Two formulas are employed to identify each element in the positional encoding vector 𝑝𝑝𝑖𝑖 :

Here, the following applies:

•	 pos = Position of the word in the input sequence.

•	 𝑑𝑑 =  Size of the output embedding space.

•	 𝑖𝑖 =  Index to column indices 0 ≤ i < d/2 . A single value of i maps to both sine and cosine functions.

•	 n =  User-defined scalar.

𝑃𝑃𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝,2𝑖𝑖) = sin (𝑝𝑝𝑝𝑝𝑝𝑝

𝑛𝑛
2𝑖𝑖
𝑑𝑑

)        𝑎𝑎𝑎𝑎𝑎𝑎       𝑃𝑃𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝,2𝑖𝑖+1) = cos (𝑝𝑝𝑝𝑝𝑝𝑝

𝑛𝑛
2𝑖𝑖
𝑑𝑑

) 
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Let’s see a numerical example to clarify the situation. Suppose that we would like to perform positional 
encoding for the phrase deep learning, using four-dimensional embedding vectors (d=4) and n=100. 
Table 7.1 shows the calculations:

Table 7.1 – Calculating positional encoding for a sample phrase

Each of the two words receives a positional vector with four elements that can be concatenated with 
the respected embeddings vector. Without delving into too many details, the previous discussion 
should be enough to understand the need for positional encoding and its implementation. Let’s now 
move to the encoder part of the transformer.

Understanding multi-head attention

Having a rich representation of the input at our disposal, we need a component that can attend to 
the most critical information. We already discussed attention mechanisms before, but transformers 
incorporate a much more powerful type of attention that helps the model focus on the critical words of 
any input sentence. This type is called self-attention and differs from simple attention in various ways. 
The most crucial difference is that the latter allows the model to focus on the input while producing 
the output. In contrast, in self-attention, the inputs can interact with each other. Consider the example 
in Figure 7.12 for both types of attention:

Figure 7.12 – Simple versus self-attention example
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In simple attention, we focus on specific words with respect to some external query such as the 
question in Figure 7.12: Who framed Roger Rabbit? For example, attending to Judge Doom, the 
antagonist, and Roger Rabbit is sufficient to respond to the query. On the other hand, self-attention 
compares each word with all the others in the sentence, reweighing the word embedding (that also 
include positional information) to include contextual relevance. The intuition behind self-attention 
is similar to how humans judge the meaning of a word, simply by examining the context in which it 
appears. In the previous example, each of the two occurrences of the word park is compared to all 
the other words and reweighed to include the relevance of the word car (first occurrence) and the 
word walk (second occurrence).

We can now zoom in on the components in the transformer model for implementing the self-attention 
mechanism. This is where dot-product attention comes into the scene, schematically shown in Figure 
7.13:

Figure 7.13 – Scaled dot-product attention

The role of this component is to implement self-attention using as inputs three matrices named Query 
(Q), Key (K), and Value (V). To get a better understanding of the utility of these matrices, consider 
the example in Figure 7.14, stemming from the information retrieval field:
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Figure 7.14 – The Query, Key, and Value analogy

In the simplest scenario, when we type a Query in the Google search bar, the algorithm tries to find the 
Key from a database most similar to the search query. Then, we retrieve the corresponding Value—a 
web page, in our example. All search engines provide more than one key-value pair ranked on their 
similarity measure with the query. When the algorithm tries to provide the most relevant results, it 
essentially attends to the most important information in the web page’s Key (for example, its title).

Let’s observe how tree matrices are created using the visualization in Figure 7.15:

Figure 7.15 – Creation of Query (Q), Key (K), and Value (V) matrices
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Interestingly, they all use the same input, EP—the word embedding with positional encoding, which 
are multiplied with different weights (WQ, WK, and WV). The latter are parts of three district linear 
layers and are learned through backpropagation. Linear layers use matrix multiplication to transform 
the input into output using a weight matrix. This step aims to map the input to the correct output for 
Q, K, and V and reduce their size for computational purposes.

The term similarity should be very familiar from our previous endeavors in solving machine learning 
(ML) problems throughout the book. We encounter the same concept in dot-product attention for 
calculating the similarity of the query and the key matrices. The MatMul operation in Figure 7.13 
performs the multiplication of Q and K matrices using the transpose version for the latter. Then, 
the Scale step divides each element of the multiplication matrix by the factor √𝑑𝑑𝑘𝑘 , where 𝑑𝑑𝑘𝑘  is the 
dimensions of the key vector. We can summarize this calculation with the following formula:

The previous quantity resembles the cosine similarity formula discussed in the Calculating vector 
similarity section of Chapter 2, Detecting Spam Emails. The numerator is the dot product of two 
matrices. In contrast, the denominator is a scaling factor. Recall that for the cosine similarity case, 
the scaling factor is the product of the magnitudes of each vector.

The next step in the pipeline applies a softmax function to the previous output to convert all values 
from zero to one and produce the final attention filter. Notice that we deliberately skipped Mask (opt.) 
for later. When performing the second MatMul operation with the specific filter and the Value matrix, 
we drown out irrelevant words, as these are multiplied with very small numbers in the filter. Consider 
an intuitive example using various image filters in Figure 7.16:

.

Figure 7.16 – Attention filter (left), the original image (middle), and filtered image (right)

𝑄𝑄𝐾𝐾𝑇𝑇

√𝑑𝑑𝑘𝑘
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Multiplying the attention filter with the original image produces a filtered image that includes the 
information we are interested in. In the specific example, we focus on the weather conditions, the 
place, or the person’s activity.

The whole process of dot-product attention is summarized in the following formula that provides a 
filtered value matrix:

Is applying a single attention filter enough to attend to all critical information? Unfortunately not, 
but stacking more than one dot-product attention component together allows us to focus on different 
parts of the input. Figure 7.17 shows a technique called multi-head attention that exploits this idea:

Figure 7.17 – Multi-head attention consists of several attention layers running in parallel

Transformers use multi-head attention to learn multiple attention filters that capture separate linguistic 
phenomena. After this point, we can perform the Concat step and, as the name suggests, concatenate 
all attention filters into one. The final Linear component reduces the size of the concatenated matrix to 
the size of each separate attention filter, which is the final output of the multi-head attention component.

Finalizing the encoder part

We need to cover a few more components to complete the discussion on the transformer architecture 
for the encoder. Looking back at Figure 7.11, we observe that the data flow can take different routes. We 
might skip certain pipeline nodes following the different paths (depicted with the arrows). For example, 
we can move directly from the positional encoding step to the Add & Norm component, skipping the 
Multi-Head Attention component. This residual connection provides alternative paths for data to 
reach the latter parts of the neural network (NN) by bypassing some layers. The specific functionality 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾, 𝑉𝑉) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 



Performing abstractive summarization 287

is counterintuitive, as NNs are meant to process data, and occasionally skipping computational steps 
sounds like a contradiction. There is a reason, however. The more processing that happens to the data, 
the more information is lost about its original form. There are situations where this is a drawback, 
and preserving possible previous versions of the data becomes a necessity. The residual connection 
plays this role and allows data preservation. There is also another reason.

One particular problem while training a NN is caused by exploding and vanishing gradients, as 
already discussed in the Understanding long short-term memory units section of Chapter 6, Teaching 
Machines to Translate. Residual connections are empirically shown to converge much more easily, 
even if the network is very deep. Instead of going through a single path of fixed length (number of 
layers), a feed-forward network with residual connections consists of many paths of varying lengths. 
This topology presents a competitive advantage because the network behaves as an ensemble of 
independent networks. Although the ensembles do not resolve the exploding or vanishing gradient 
problems, they circumvent those situations by producing shallow networks. In the Introducing the 
random forest algorithm section of Chapter 3, Classifying Topics of Newsgroup Posts, we have seen the 
power of ensemble learning, which relies on combining multiple models to increase classification 
performance. Perhaps this is the reason that residual connections lead to more accurate models.

Let’s go a step further and see what happens in the Add & Norm component that adds the output of the 
positional encoding (through the residual connection) and the Multi-Head Attention component. Then, 
we normalize the values of the summed output through a process called layer normalization, which 
enables smoother gradients, faster training, and better generalization accuracy. Layer normalization 
means standardizing the neuron activation along the dimensions of the features. Specifically, each 
element of the matrix is standardized using the mean and the variance of all features. Again, you can 
refer to a relevant discussion in the Understanding principal component analysis section of Chapter 3, 
Classifying Topics of Newsgroup Posts.

The next step in the pipeline is to incorporate a fully connected Feed Forward network consisting 
of a couple of linear layers with a ReLU activation in between. The role of this network is to process 
the attention output further, capture more linguistic patterns, and provide richer representations. 
Finally, its output is fed to an Add & Norm component, as the one we discussed before. At this point, 
we conclude the presentation of the encoder part, and in the next section, we focus on the decoder.

Finalizing the decoder part

The decoder includes many similar components, such as the encoder, and a few other slightly different 
ones. First, the two components differ in the number of their inputs. While the encoder receives just 
one input, the decoder receives the encoder’s output and its own output from the previous timestep. 
In the first iteration of the decoder, there is no previous output to feedback, so it is fed with a special 
<go> token that signifies the start of the generated text. Conversely, the generation process ends 
when the decoder emits a <stop> token. The names of these tokens are arbitrary, and you can use 
whatever makes sense for your application.



Summarizing Wikipedia Articles288

Let’s say a few things about the Mask (opt.) step that we skipped a few pages before, which is part of 
the masked multi-head attention of the decoder. First, during the training phase, we do not want the 
decoder’s attention mechanism to access tokens (words) that are not yet predicted. Instead, attention 
should be applied to tokens up to the current position. That is the index until which prediction is done 
by the transformer. Otherwise, it would be like cheating, and we need a way to hide future tokens. A 
good analogy is the teacher forcing strategy discussed in the Introducing sequence-to-sequence learning 
section of Chapter 6, Teaching Machines to Translate. The teacher lets the student make their best effort 
to speak out the answer (token) and corrects them if needed. So, we incorporate a method to prevent 
computing attention scores for future words called masking. The method applies a look-ahead mask 
that is added before calculating the softmax (SoftMax) and after scaling the scores (Scale).

In this section, we had the opportunity to examine the demanding yet exciting transformer architecture 
that has proven to be very powerful in NLP tasks. The discussion focused on the various subcomponents 
of this deep learning (DL) model, and we tried to shed some light on their functionality. We will 
finally implement a transformer model for text summarization in the following section.

Putting the transformer into action

After the presentation of the transformer architecture, we can move to the fun part and put it into 
action! The Python code is based on the implementation taken from a relevant TensorFlow tutorial 
(https://www.tensorflow.org/text/tutorials/transformer), which, due to space 
limitations, cannot be included as a whole in the book. However, the relevant Jupyter notebook contains 
the necessary code and explanations to help you understand the different steps. In this section, we 
cherry-pick a few coding snippets and relate them to our earlier discussion. But first, we need data to 
implement this powerful DL model!

Loading the dataset

As a widely accessible and free encyclopedia, Wikipedia contains information on all branches of 
knowledge, so it’s an excellent resource for data. In this respect, we extract Wikipedia pages and use 
them for training and evaluating the transformer model. Instead of implementing a crawler from scratch, 
we use a Python library that makes it easy to access and parse data from Wikipedia. Let’s see how.

The code in the text-summarization-transformer.ipynb notebook requests the wiki 
page for Athens, the Greek capital, and prints the titles of the different sections:

import wikipedia

# Use the English language version.

wikipedia.set_lang("en")

https://www.tensorflow.org/text/tutorials/transformer
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# Get the wiki content for 'Athens'.

wikisearch = wikipedia.page("Athens")

# Print page sections.

wikisections = wikisearch.sections

print(wikisections)

>> ['Etymology and names', 'History', 'Geography', 
'Environment', 'Safety', 'Climate', 'Locations', 
'Neighbourhoods of the center of Athens (Municipality 
of Athens)', 'Parks and zoos', 'Urban and suburban 
municipalities', ..., 'Museums', 'Tourism', 'Entertainment 
and performing arts', 'Sports', 'Overview', 'Sports clubs', 
'Olympic Games', '1896 Summer Olympics', '1906 Summer 
Olympics', '2004 Summer Olympics', 'See also', 'References', 
'External links']

Comparing the output with the one in the Scraping Wikipedia articles section, we do not observe any 
differences, which is reassuring. Next, for our analysis, we download the wiki pages of 40 capitals:

import pandas as pd

# Get the wiki page for the following capitals.

capitals = [ 'Amsterdam', 'Ankara', 'Athens', 'Beijing', 
'Canberra', 'Copenhagen', 'Dakar', 'Dhaka', 'Dublin', 
'Guatemala City', 'Harare', 'Islamabad', 'Jakarta', 
'Jerusalem', 'Khartoum', 'Kinshasa', 'Kyiv', 'Lisbon', 
'London', 'Madrid', 'Manila', 'Mexico City', 'Montevideo', 
'Moscow', 'Nairobi', 'New Delhi', 'Ottawa', 'Paris', 'Riyadh', 
'Rome', 'San Salvador', 'Seoul', 'Stockholm', 'Tehran', 
'Tirana', 'Tokio', 'Washington D.C.', 'Wellington', 'Yerevan', 
'Zagreb']

The dataset consists of a summary and content part:

# Store specific information from each page.

df = pd.DataFrame(columns=['summary', 'content'])

# Iterate in the list of capitals and search for the 
corresponding wiki page.

for capital in capitals:
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    wikisearch = wikipedia.page(capital)

    # We need to remove the summary from the content.

    df = df.append({'summary' : wikisearch.summary.
replace("\n", " "), 'content' : wikisearch.content.
replace(wikisearch.summary, "").replace("\n", " ")}, ignore_
index=True)

Before dealing with the transformer, let’s examine the data by creating a method to extract triplets 
with the subject, verb, and object from the text:

# Extract the subject, verb, and object from the text.

def extract_SVO(text):

    subjects, verbs, objects = [], [], []

    doc = nlp(text)

    # Get the tuples with the results.

    tuples = textacy.extract.subject_verb_object_triples(doc)

    # Iterate over all tuples.

    for x in tuples:

        subjects.append(str(x[0]).replace("[", "").replace("]", 
""))

        verbs.append(str(x[1]).replace("[", "").replace("]", 
""))

        objects.append(str(x[2]).replace("[", "").replace("]", 
""))

    return subjects, verbs, objects

Next, we apply the method using Athens as a case study and store the triplets for visualization:

# Obtain the triples for 'Athens'.

subjects, verbs, objects = extract_SVO(df['content'][2])

# Create the dataframe used for visualization.
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kg_df =  pd.DataFrame({"source": subjects, "edge": verbs, 
"target": objects})

kg_df.sample(3, random_state=12)

>>   source          edge          target

191  neighbourhoods  include       Kypseli

20   Athens          had, become   rebellion

219  They            brought       Rebetiko, music

The subject-verb-object relation can be visualized with a data structure known as a knowledge graph 
(KG). A KG is a convenient way to show visually how two entities relate to each other. Instead of a 
lengthy text document, a KG can immediately demonstrate important relations, so it’s a valuable tool 
for data scientists. In the following code snippet, we generate a KG using only 15 relations for clarity:

import networkx as nx

# Create a directed graph from a dataframe using 15 triples.

G = nx.from_pandas_edgelist(kg_df[kg_df['source'] == 'Athens']
[0:15], "source", "target", edge_attr=True, create_using=nx.
MultiDiGraph())

# Draw the graph.

plt.figure(figsize=(10, 10))

pos = nx.spring_layout(G)

nx.draw(G, with_labels=True, node_color='skyblue', edge_
cmap=plt.cm.Blues, font_size=16, edge_color='r', pos=pos)

nx.draw_networkx_edge_labels(G, font_size=14, pos=pos)
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The output is presented in Figure 7.18:

Figure 7.18 – KG for the word Athens

Athens is connected to all the other entities by an edge that represents the relationship between the 
two nodes. From Figure 7.18, we observe the following relations: Athens – hosted – Olympic Games, 
Athens – has – summer Mediterranean climate, and Athens – was defeated – Sparta. Having the 
Python library do a lot of the heavy lifting for us, we can proceed to the training of the transformer 
model in the next section.

Training the model

Before we start, remember that we only present part of the code and that a few lines are truncated to 
enhance clarity. Our training set consists of pairs of summaries and the full content for each capital 
city. First, let’s examine the Transformer class shown in the following code snippet:

class Transformer(tf.keras.Model):

    def __init__(self, num_layers, d_model, num_heads, dff, 
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input_vocab_size, target_vocab_size, pe_input, pe_target, 
rate=0.1):

        super(Transformer, self).__init__()

        self.encoder = Encoder(num_layers, d_model, num_heads, 
dff, input_vocab_size, pe_input, rate)

        self.decoder = Decoder(num_layers, d_model, num_heads, 
dff, target_vocab_size, pe_target, rate)

        self.final_layer = tf.keras.layers.Dense(target_vocab_
size)

The transformer includes an Encoder part, a Decoder part, and a final linear layer (Dense). 
Observe the different parameters used as input arguments to the layers. It’s highly recommended to 
alter their values and experiment.

Next, we examine what happens inside the Encoder part:

class Encoder(tf.keras.layers.Layer):

    def __init__(self, num_layers, d_model, num_heads, dff, 
input_vocab_size, maximum_position_encoding, rate=0.1):

        super(Encoder, self).__init__()

        self.d_model = d_model

        self.num_layers = num_layers

        self.embedding = tf.keras.layers.Embedding(input_vocab_
size, d_model)

        self.pos_encoding = positional_encoding(maximum_
position_encoding, self.d_model)

        self.enc_layers = [EncoderLayer(d_model, num_heads, 
dff, rate) for _ in range(num_layers)]

The input goes through an embedding layer, which is summed with the positional encoding. The 
output of this summation is the input to the encoder layers shown in the following code snippet:

class EncoderLayer(tf.keras.layers.Layer):

    def __init__(self, d_model, num_heads, dff, rate=0.1):
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        super(EncoderLayer, self).__init__()

        self.mha = MultiHeadAttention(d_model, num_heads)

        self.ffn = point_wise_feed_forward_network(d_model, 
dff)

        self.layernorm1 = tf.keras.layers.
LayerNormalization(epsilon=1e-6)

        self.layernorm2 = tf.keras.layers.
LayerNormalization(epsilon=1e-6)

    def call(self, x, training, mask):

        attn_output, _ = self.mha(x, x, x, mask)

        out1 = self.layernorm1(x + attn_output)

        ffn_output = self.ffn(out1)

        out2 = self.layernorm2(out1 + ffn_output)

        return out2

We observe that the EncoderLayer class includes the components for multi-head attention, 
feed-forward network, and layer normalization. Moreover, notice how the residual connection is 
implemented. The ffn feed-forward network input is out1, which is the summation of X (word 
embedding and positional encoding) and the output of the attention module, attn_output. The 
decoder follows a similar architecture, so we don’t present it explicitly.

Another topic that deserves special mention is how we can use an adaptive learning rate. We present 
this task in the section that follows.

Adapting the learning rate

Recall the discussion in the Understanding gradient descent section of Chapter 4, Extracting Sentiments 
from Product Reviews, about choosing the correct value for the learning rate. Too large steps may inhibit 
the algorithm from reaching the minimum, while small steps might take too long for the algorithm 
to converge. In our implementation, we use an adaptive learning rate to move fast at the beginning 
of the training process and slow down as we reach the minimum. The learning rate is based on the 
following formula:

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
−0.5 ∗ min⁡(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛𝑛𝑛−0.5, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1.5) 
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Here, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the number of expected features in the encoder/decoder inputs, equal to 128 in our 
example. The formula suggests an increase of the learning rate linearly for the first warmup_steps 
(= 4000) training steps. Afterward, it is decreased proportionally to the inverse square root of the step 
number. The code that follows shows the calculations:

class CustomSchedule(tf.keras.optimizers.schedules.
LearningRateSchedule):

...

    def __call__(self, step):

        arg1 = tf.math.rsqrt(step)

        arg2 = step * (self.warmup_steps ** -1.5)

        return tf.math.rsqrt(self.d_model) * tf.math.
minimum(arg1, arg2)

Based on the previous formula, we create a learning_rate variable and the Adam optimizer 
that uses it:

learning_rate = CustomSchedule(d_model)

optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, 
beta_2=0.98, epsilon=1e-9)

Recall that we already used the Adam optimizer in the Performing classification section of Chapter 4, 
Extracting Sentiments from Product Reviews, and the rmsprop optimizer in the Training the model 
section of Chapter 6, Teaching Machines to Translate.

For calculating loss, we incorporate SparseCategoricalCrossentropy, which computes the 
cross-entropy loss between the labels and predictions, suitable when the output labels are integer values:

loss_object = tf.keras.losses.
SparseCategoricalCrossentropy(from_logits=True, 
reduction='none')

Cross-entropy builds upon the idea of entropy from the information theory, as discussed in the 
Contracting a decision tree section of Chapter 3, Classifying Topics of Newsgroup Posts. It calculates 
the number of bits required to represent an average event from one distribution compared to another.

Another impediment is that the training runs can take several hours or even days to finish. We need a 
way to keep track of the progress and resume the process in case of failure without starting from scratch. 
A useful feature, in this case, is the Checkpoint mechanism used in the following code snippet:

ckpt = tf.train.Checkpoint(transformer=transformer, 
optimizer=optimizer)
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The code creates a bunch of files in a predetermined folder, and we can specify the frequency of the 
checkpoints. For example, we can save a checkpoint every fifth epoch:

if (epoch + 1) % 5 == 0:

         ckpt_save_path = ckpt_manager.save()

         print ('Saving checkpoint for epoch {} at {}'.
format(epoch+1, ckpt_save_path))

This section aimed to provide the necessary hooks to start working with the Jupyter notebook. The 
following section introduces the last topic of this chapter concerning the evaluation methodology 
and the relevant metrics for text summarization.

Measuring summarization performance
As with the discussion in the Measuring translation performance section of Chapter 6, Teaching 
Machines to Translate, using the BiLingual Evaluation Understudy (BLEU) score, we present a metric 
for assessing the performance of text summarization systems. The Recall-Oriented Understudy 
for Gisting Evaluation (ROUGE) score is the subject of the current section, and although its name 
sounds complicated, it’s incredibly easy to understand and implement. It works by comparing an 
automatically produced summary against a human reference summary using n-grams. In that sense, 
it is symmetrical to the BLEU score. Additionally, ROUGE is a set of metrics rather than a single one. 
They all assign a numerical score to a summary that tells us how good it is compared to a reference 
one. Let’s examine the first variant.

ROUGE-N measures the overlap of unigrams, bigrams, trigrams, and higher-order n-grams, where 
N represents the n-gram order. Thus, for ROUGE-1, we would measure the match rate of unigrams 
between our prediction and the reference. The calculations are based on recall, precision, and F-score. 
In the Measuring translation performance section of Chapter 6, Teaching Machines to Translate, we saw 
an example based on Figure 6.26. Without explicitly mentioning this fact, we did calculate ROUGE-1. 
You can refer to the specific discussion for the step-by-step calculations.

We can also change the granularity of the comparison by using bigrams or trigrams. Then, ROUGE-2 
and ROUGE-3 are the chosen metric, respectively. To facilitate our discussion, consider the example 
in Figure 7.19, contrasting a prediction with the reference summary:

Figure 7.19 – Reference and predicted summarization example
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Then, we can make the following calculations:

When the summaries become long, the ROUGE-2 score becomes small because there are fewer 
possible bigrams to match. This situation is especially true for abstractive summarization, where the 
generated sentences are novel. For this reason, it is common to report both ROUGE-1 and ROUGE-2 
in an evaluation.

Another variant that does not use n-grams is ROUGE-L, which measures the longest common 
subsequence (LCS) between our prediction and reference. A subsequence is a sequence that appears 
in the same relative order but is not necessarily contiguous. So, looking at the prediction, the longest 
common subsequence is Trying is the first step towards, and the relevant measurements are these:

The main benefit of ROUGE-L compared to ROUGE-N is that it doesn’t depend on n-grams, so it tends 
to capture similarity patterns more accurately. Notice that there are a few more ROUGE variants that 
we don’t cover in this section.

We can now proceed with the calculation of ROUGE in Python. In the following code snippet, we 
define a summarize method that returns the summary of an input document:

# Summarize an input document.

def summarize(input_document):

    summarized = evaluate(input_document=input_document)[0].
numpy()

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
#𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 4

7 = 57% 

𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺𝐸𝐸2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
#𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

4
8 = 0.5% 

F--score = 2 ∗
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

= 2 ∗ 0.57 ∗ 0.50.57 + 0.5 = 0.53% 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝐿𝐿𝐿𝐿𝐿𝐿_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

#𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 6
8 = 75% 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐿𝐿𝐿𝐿𝐿𝐿_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

#𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
6
9 = 67% 

F--score = 2 ∗
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

= 2 ∗ 0.75 ∗ 0.67
0.75 + 0.67 = 71% 
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    # Exclude <go> token.

    summarized = np.expand_dims(summarized[1:], 0)

    return summary_tokenizer.sequences_to_texts(summarized)[0]

Next, we call the method using one sample from the documents:

result = summarize(document[2])

print(result)

>> athens ath enz greek αθήνα romanized athína aˈθina listen 
ancient greek ἀθῆναι romanized athênai pl atʰɛ̂ːnai̯ is the capital 
city of greece with a population close to 4 million it is the 
largest city in greece and the...

The reference, in this case, is this:

reference = ' '.join(summary[2].split()[1:51]).lower()

print(reference)

>> athens ( ath-enz; greek: αθήνα, romanized: athína [aˈθina] 
(listen); ancient greek: ἀθῆναι, romanized: athênai (pl.) 
[atʰɛ̂ːnai̯]) is the capital city of greece. with a population 
close to 4 million it is the largest city in greece, and the...

Finally, the scores are calculated, as follows:

from rouge_score import rouge_scorer

# Calculate the Rouge scores.

scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 
'rougeL'], use_stemmer=True)

scores = scorer.score(result, reference)

print(scores)

>> {'rouge1': Score(precision=0.9807692307692307, 
recall=0.9807692307692307, fmeasure=0.9807692307692307), 
'rouge2': Score(precision=0.9607843137254902, 
recall=0.9607843137254902, fmeasure=0.9607843137254902), 
'rougeL': Score(precision=0.9807692307692307, 
recall=0.9807692307692307, fmeasure=0.9807692307692307)}

The output suggests high values for the scores, and as expected, ROUGE-2 is slightly inferior. Of course, 
beware that we measured performance on a sample also used for training the model. In general, the 
dataset and the hyperparameters of the trained model are deliberately chosen to facilitate the discussion 
of the current chapter. Also, the code needs to be executed in a reasonable amount of time. In the 
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chapter’s Jupyter notebook, you can experiment with more data and demanding configurations. You 
are already equipped for this task!

So, this concludes the discussion on ROUGE and how it measures syntactical matches rather than 
semantics. As with BLEU, it does not cater to different words with the same meaning, which is an 
apparent deficiency of both metrics. Nevertheless, ROUGE offers a straightforward and concise way 
to assess the performance of any summarization system.

Summary
This chapter dealt with text summarization, yet another hot topic in NLP. Systems of this kind aim 
to reduce the information load imposed by the overabundance of online text data. We used various 
extractive and abstractive text summarization techniques to deliver accurate summaries.

The first part of the chapter focused on web crawling and scraping, where you became acquainted 
with the basic concepts, the relevant technologies, and how to implement web spiders in Python. 
The provided coding examples constitute a sufficient guide to implementing your web crawlers for 
different tasks.

Next, we discussed various topics that led to the comprehension of the transformer model. For 
example, we debated why having a single context vector between the encoder and the decoder is a 
bottleneck. We also discussed attention mechanisms that enhance some parts of the input data while 
diminishing others. Finally, utilizing a corpus of Wikipedia pages, we created a dataset and trained 
the transformer model.

In the last section, we focused on how specific metrics can be used to evaluate text summarization 
systems. Using specialized scores such as ROUGE provides a better way to compare different text 
summarization implementations.

The next chapter deals with another exciting theme: we exploit text data extracted from Twitter to 
perform hateful and offensive speech detection.





8
Detecting Hateful and 

Offensive Language

Sparked by the alarming situation on social media platforms, where there is a dramatic increase in 
inflammatory language, companies have already implemented algorithms to regulate or even remove 
extreme posts. On the other hand, freedom of opinion and expression is a cornerstone of many societies, 
raising concerns that attempts to curb inappropriate language could also lead to the restraint of free 
speech. The current chapter aims to identify hate and offensive language in tweets. Without delving 
into the particulars of this debate, we will address a few technical challenges and provide possible 
solutions in this setting. During this process, we also introduce many new concepts and techniques 
for machine learning.

A central theme of this chapter concerns the reuse and tuning of third-party models to minimize the 
effort of a new deployment. Using an open source dataset with hateful and offensive tweets, we will 
examine the steps to build a state-of-the-art language model and use it for classification. The presented 
algorithms have been in the spotlight recently due to their usage in winning prestigious competitions 
in the field. We will also utilize a validation test to adjust the model’s parameters and avoid certain 
pitfalls. Finally, we will examine the strategies for dealing with imbalanced data, such as the corpus used.

By the end of the chapter, you will be capable of making an essential leap into more advanced machine-
learning techniques and enhancing your programming toolbox.

In this chapter, we will go through the following topics:

•	 Implementing state-of-the-art language models

•	 Building more complex neural architectures

•	 Applying new algorithms for text classification

•	 Understanding the need for validation sets

•	 Treating imbalanced datasets
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Technical requirements
The chapter’s code has been truncated in certain parts to facilitate reading the content. However, the 
whole code is available as different Jupyter notebooks in the book’s GitHub repository:

https://github.com/PacktPublishing/Machine-Learning-Techniques-for-
Text/tree/main/chapter-08

Introducing social networks
In the late 1960s, the famous psychologist Stanley Milgram decided to investigate the small-world concept, 
which states that the entire world is connected through short chains of acquaintances. Performing an 
ingenious experiment, Milgram asked a few hundred people from various locations to get a letter to a 
stranger in Boston. The participants were given information about the target recipient and instructed 
to send the letter to someone they knew that would more likely know that individual. The following 
person in the chain had to repeat the same task and send the letter to someone even closer. When 
Milgram examined the letters that reached the target, he realized they had changed hands about six 
times on average. The result demonstrated that, on average, any two individuals in the US are separated 
by five connections, known by the phrase six degrees of separation.

Although this outcome can be debated for many reasons, it paved the way for similar experiments in 
social networks, such as a study about Facebook in 2016. The study showed that each platform user 
is connected to every other person by an average of three and a half other people. Similar numbers 
apply to Twitter, and on platforms such as LinkedIn, we are notified about the distance of potential 
connections (second-degree or third-degree ones). It’s, therefore, a no-brainer that social networks have 
shortened the gap between any two people in the world. However, this has not come without a cost.

The spread of hate speech and fake news is a serious side effect of expanding social networks. Most of the 
time covered by anonymity, social network users feel more comfortable speaking hate or disseminating 
fabricated information as opposed to real life, where they have to confront the consequences of what 
they say. All major social networks make an enormous effort to deal with such a problem, and machine 
learning is a powerful tool in this arena.

The current chapter focuses on identifying hate and offensive speech in tweets using a state-of-the-art 
language model and other classification methods. To perform this task, we will use, for convenience, a 
publicly available corpus from https://github.com/t-davidson/hate-speech-and-
offensive-language. If you are interested, you can also extract tweets directly from the platform 
using tools such as Tweepy (https://www.tweepy.org/).

https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-08
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-08
https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/t-davidson/hate-speech-and-offensive-language
https://www.tweepy.org/
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The difference between hate and offensive speech can be subtle, with difficult-to-discern boundaries. 
The providers of this dataset define hate speech as language that expresses hatred toward a targeted 
group or is intended to be derogatory, and is used to humiliate, or insult the group’s members. On 
the other hand, sexist tweets are generally classified as offensive. So, let’s consider three examples:

•	 Hate speech: I hate the ghetto trash at the special school across the street from my building. All 
of them will grow up to be criminals.

•	 Offensive speech: God, my tweets are so ghetto.

•	 Neither offensive nor non-offensive speech: So many weird people in the ghetto at this time.

We should warn the reader of the sensitive and offensive content in the dataset, which is solely used 
for educational purposes. In this respect, this chapter aims to equip you on how to filter similar 
deleterious content from public exposure. So, without further ado, let’s begin the discussion with a 
state-of-the-art language model.

Understanding BERT
Looking at the transformer’s encoder/decoder architecture discussed in the Introducing transformers 
section of Chapter 7, Summarizing Wikipedia Articles, we can observe a clear separation of tasks. The 
encoder is responsible for extracting features from an input sentence, such as syntax, grammar, and 
context. At the same time, the decoder maps it to a target sequence – for example, translates it to 
another language. This separation makes the two components self-contained; therefore, they can be 
used independently.

This section introduces a state-of-the-art transformer-based technique to generate language representation 
models named Bidirectional Encoder Representation from Transformers (BERT). BERT incorporates 
a stack of transformer encoders to understand the language better.

Similarly to word embedding, the method belongs to the self-supervised learning family because it 
does not require human-annotated observation labels. Therefore, BERT can be utilized in various 
tasks, such as machine translation, sentiment analysis, text summarization, and so forth, which were 
the focus of previous chapters.

The power of BERT in different natural processing tasks is accessed using the General Language 
Understanding Evaluation (GLUE) benchmark (https://gluebenchmark.com/). The 
specific benchmark is a collection of resources for training, evaluating, and analyzing natural language 
understanding systems. GLUE is centered around nine English sentence understanding tasks – for 
example, determining whether a sentence is grammatically correct or not.

https://gluebenchmark.com/
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A typical step when incorporating BERT is to pre-train the model to understand the language and 
adjust it for specific applications. This way, the knowledge that is extracted during the pre-training 
phase, which takes place once, can be transferred to several applications without much effort. This 
feature is essentially the basic idea behind transfer learning, where we first pre-train a model using 
a large dataset and then fine-tune it for a specific task using a smaller one.

Consider, for example, applications for recognizing human faces. All these applications share a common 
step – extracting the human face’s basic characteristics, such as the eyes, nose, and mouth, and their 
differences rely mainly on the setting. For example, a video surveillance system aims to identify a human 
face from a distance, while for an access control system, the person is usually close to the camera. 
A robust pre-trained model can be tuned with a smaller context-dependent dataset in both cases.

In the same sense, transfer learning is a frequently adopted strategy in natural language processing. We 
can resort to powerful language models that can be adapted to the peculiarities of a specific task. The 
benefit of this case is that we can reuse the large language model multiple times without starting from 
scratch, saving a lot of computational time. Even if we are willing to undertake this task, assembling 
sufficiently large and representative text corpora is notoriously difficult and costly.

To have an order of magnitude, BERT was trained on Wikipedia (2,500 million words) and Google’s 
Books corpora (800 million words) using the specialized hardware Tensor Processing Unit (TPU). 
The first implementations, BERT-Base and BERT-Large, had the following configurations: 12 layers, 
768 hidden nodes, 12 attention heads, and 110 million parameters; and  24 layers, 1,024 hidden nodes, 
16 attention heads, and 340 million parameters respectively. For many competitive reasons, applying 
transfer learning when possible is preferable. The coming two sections delve into more detail about 
BERT’s pre-training and tuning phases.

Pre-training phase

Models such as long short-term memory (LSTM) present a fundamental deficiency, as the input 
words are treated sequentially. Therefore, they have difficulty identifying a sentence’s true context. 
Bidirectional LSTMs also exist, where input is fed from both left to right and right to left, obtaining 
a better understanding of the words. However, this is a compromise, as the two input sequences are 
treated independently. The transformer architecture solved these problems by receiving the input 
sentence as a whole and not in chunks. This feature allowed the model to learn the context of both 
directions simultaneously. BERT architecture takes advantage of this capability and utilizes two custom 
models to increase its learning capacity.
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The masked language model (MLM) enforces bidirectional learning by masking a word (or a 
percentage of words) in the input sentence and directing BERT to find a word that better predicts 
the masked one. You can relate this approach to a fill-in-the-blanks kind of problem. For example, in 
the following phrase, A picture is worth a _______ words, we can reasonably predict that the missing 
token is probably the word thousand. A particular configuration in BERT is that masking happens in 
15% of the input tokens. More specifically, 80% of these tokens are replaced with the token [MASK], 
10% are replaced with a random word, and the rest, 10%, are left unchanged to introduce bias to the 
correct word. But before any processing takes place, the input needs to be adapted accordingly, as 
shown in Figure 8.1:

Figure 8.1 – BERT input representation

In this example, the input consists of two sentences, love this song (A), and it is cool (B). The input 
to the encoder is then the sum of three embeddings vectors:

•	 The Token embeddings include the special classification token, [CLS], as the first symbol and 
[SEP] as the last to separate two sentences

•	 The Segment embeddings are used as markers to help the encoder distinguish between two 
sentences

•	 The Positional embeddings indicate the position of each token in the input
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The second model used by BERT is the next sentence prediction (NSP), which, as the name suggests, 
predicts whether a given sentence follows the previous one. The specific step helps BERT understand 
the context across different sentences. For example, if we encounter the phrase I am hungry in a piece 
of text, there is a higher probability that the coming phrase is Let’s have dinner rather than The broader 
geopolitical context is fluid.

The NSP process should give a higher probability for the first option than the second one. Combining 
MLM and NSP allows BERT to understand the language sufficiently.

To summarize all the steps during the pre-training phase, consider Figure 8.2:

Figure 8.2 – The overall pre-training procedure for BERT

The input during the pre-training phase is pairs of sentences (A and B), with some of their words 
(Tok) being masked. Then, the words are converted to vectors using pre-trained embeddings (E). The 
binary output, C, corresponds to the NSP procedure and becomes 1 when sentence B follows sentence 
A and 0 in the opposite case. Each T in the output is a word vector created by the MLM procedure.

In the following section, we will discuss the fine-tuning phase in BERT.
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Fine-tuning phase

After creating a generic language model, we can fine-tune it for any application under study. Using 
the self-attention mechanism in the transformer permits BERT to model many downstream tasks by 
simply fine-tuning all pre-trained parameters. For example, suppose that we are building a question-
answering system. In this case, we need a dataset with questions and answers similar to sentences 
A and B. Figure 8.3 illustrates the fine-tuning procedure, using pairs that include a question and a 
paragraph that contains the answer:

Figure 8.3 – The overall fine-tuning procedure for BERT

As before, the [CLS] token is added before every input example. The [SEP] symbol separates the 
question and the paragraph. The output is the start and the end token from the paragraph that most 
likely answers the question. Another example of using a sentence A and a sentence B combination is 
for sentence pair classification (see the top part of Figure 8.4):
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Figure 8.4 – The fine-tuning procedure for sentence pair classification 

(the top part) and NER (the bottom part)

One example of sentence pair classification is the sentence entailment task, where, given two sentences, 
the aim is to decide whether the meaning of one can be entailed (inferred) from the other. Note that 
using a pair of sentences is one of the options to employ BERT. Instead of two sentences packed 
together, the input can also be a single sentence. An example, in this case, is the single sentence 
tagging task, such as named entity recognition, where a tag must be predicted for every word in the 
input (the bottom part of Figure 8.4).
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Observe the NER output using the IOB format (O and B-PER) that we encountered in the Executing 
name entity resolution section of Chapter 6, Teaching Machines to Translate. In conclusion, we can 
use BERT for various tasks, and a great benefit of fine-tuning compared to pre-training is that it is 
relatively inexpensive. Equipped with a good understanding of the concepts behind the model, we can 
proceed to the next section and incorporate BERT for the hate classification problem of this chapter.

Putting BERT into action

To utilize BERT, we need to perform two distinct tasks. First, the proper dataset should be prepared, 
and then the model implemented. We will start with the first task.

Preparing the dataset

Let’s load the instances from the tweets dataset:

import pandas as pd

# Read the data from the csv file.

Data = pd.read_csv('./data/labeled_data.csv')

data.sample(random_state=4)

>>... hate_speech    offensive_language    neither    class

...    0                    3                0        1

Each sample was annotated by three people who labeled each tweet as either hate_speech=0, 
offensive_language=1, or neither=2. It is not uncommon to encounter disagreement among 
the annotators, so class of the tweet is determined by a majority vote. In the previous example, all 
three annotators agreed, however. Next, we print an example for each class:

# Print an example for each class.

Print("Hate speech:", data.iloc[10477].tweet)

print("Offensive speech:", data.iloc[9463].tweet)

print("Neither offensive nor non-offensive speech:", data.
iloc[20963].tweet)

>>

* Hate speech: I hate the ghetto trash at the special school 
across the street from my building. All of them will grow up to 
be criminals.

* Offensive speech: God my tweets are so ghetto

* Neither offensive nor non-offensive speech: So many weird 
people in the ghetto at this time.
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A significant reason for using BERT is the small size of our dataset (~25,000 tweets). It would be 
challenging to build a language model solely from this corpus. The code that follows shows the number 
of samples per each class:

# Print the number of examples per class.

Data['category'] = data['class'].map({0: 'hate_speech', 1: 
'offensive_language', 2: 'neither'})

data['category'].value_counts()

>>

offensive_language     19190

neither                4163

hate_speech            1430

Name: category, dtype: int64

One crucial observation is that the dataset is imbalanced, as many more instances exist for the 
offensive_language class. Keep a note here because this is something that we need to deal 
with later.

Another important issue is that the tweets do not merely consist of human text, and they can frequently 
contain handles, emojis, and HTML links. These are also text elements, and using the following code, 
we can extract this information:

# Extract the number handles, emojis, and links in the tweets.

handles_count = data['tweet'].str.count("@[A-Za-z0-9]")

emojis_count = data['tweet'].str.count("[&#A-Za-z0-9];")

links_count = data['tweet'].str.count("http:|https:")

data['handles_count'] = handles_count

data['emoji_count'] = emojis_count

data['links_count'] = links_count

# Plot the distribution of handles per category.

sns.violinplot(data=data, x='handles_count', y='category', 
orient='h')

We can identify patterns such as @ML4Text (handle) or &#128524; (emoji) using regular expressions. 
The violin plots in Figure 8.5 show the distribution of the handle elements in the three categories:
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Figure 8.5 – Distribution of handles per category

Violin plots resemble boxplots in that they show summary statistics, such as the median and interquartile 
ranges, but they can also present the data distribution. For example, Figure 8.6 contrasts the two types 
of plots for the same dataset:

Figure 8.6 – Violin versus boxplot

The output suggests a similar distribution in the three classes, including a small number of handles. 
For this reason, we decide to remove these extra elements using the preprocess_text method:

import re

# Remove emojis, handles, HTML character references, and links.
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def preprocess_text(text):

    regrex_pattern = re.compile(pattern = "&#[A-Za-z0-9]+;|@
[A-Za-z0-9]+|&[A-Za-z0-9]+;|(http|https)://[A-Za-z0-9./]+")

    return regrex_pattern.sub(r'', text)

data['tweet'] = data['tweet'].apply(lambda x: preprocess_
text(x))

At this point, we have available a cleaned dataset to proceed to the next phase.

Implementing the BERT model

The implementation of BERT is based on a TensorFlow tutorial: https://www.tensorflow.
org/text/tutorials/classify_text_with_bert, using the TensorFlow Hub, an open 
repository and library for reusable machine learning. The tensorflow_hub module contains a 
gamut of BERT models, which are pre-trained with different datasets. In our case, the demand for 
smaller BERT models stems from the need to use them in less powerful computational environments 
– for instance, a home laptop:

# The name of the BERT model.

model_name = 'small_bert/bert_en_uncased_L-4_H-512_A-8'

name_handle_dict = {

...

    'small_bert/bert_en_uncased_L-4_H-512_A-8':

'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-
512_A-8/1',

...

name_preprocess_dict = {

...

'small_bert/bert_en_uncased_L-4_H-512_A-8': 'https://tfhub.dev/
tensorflow/bert_en_uncased_preprocess/3',

...

Note that the model_name choice also maps to a preprocessing model. Each BERT model has a 
matching preprocessing model from TensorFlow Hub to transform text inputs into numeric tokens 
and arrange them in several tensors. In TensorFlow, all the computations involve tensors, which 

https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
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are multi-dimensional arrays with uniform types. In the available Jupyter notebook, there are many 
models to use and experiment with:

encoder_handle = name_handle_dict[model_name]

preprocess_handle = name_preprocess_dict[model_name]

print("Using the BERT model: " + encoder_handle)

print("Using the preprocess model: " + preprocess_handle)

>>

Using the BERT model: https://tfhub.dev/tensorflow/small_bert/
bert_en_uncased_L-4_H-512_A-8/1

Using the preprocess model: https://tfhub.dev/tensorflow/bert_
en_uncased_preprocess/3

Let’s now create the preprocess and BERT models:

import tensorflow_hub as hub

# Use the handle to create the preprocess model.

preprocess_model = hub.KerasLayer(preprocess_handle)

# Use the handle to create the BERT model.

bert_model = hub.KerasLayer(encoder_handle)

Then, we use the BERT model:

# Feed the text to the BERT model.

results = bert_model(text_preprocessed)

print("The shape of the pooled outputs:",  results["pooled_
output"].shape)

print("The shape of the sequence outputs:", results["sequence_
output"].shape)

>>

The shape of the pooled outputs:(1, 512)

The shape of the sequence outputs:(1, 128, 512)
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There are two keys in results. First, pooled_output is the embedding of each tweet, while 
sequence_output is the contextual embedding of every token in the tweet. We use the first to 
represent every tweet in the dataset:

# Represent each tweet as an embedding.

data['pooled'] = data['tweet'].apply(lambda x: (bert_
model(bert_preprocess_model(tf.constant([x]))))["pooled_
output"].numpy())

After finishing this step, we have at our disposal an extended dataset with the embeddings of the 
tweets. Be aware that this outcome comes from the pre-trained BERT model, and no fine-tuning has 
taken place so far. From this point on, you can apply any classification algorithm from the previous 
chapters. However, in the next section, we will continue with another prominent family of relevant 
algorithms that have proven influential in recent years.

Introducing boosting algorithms
The term boosting refers to a family of algorithms that use ensemble learning to build a collectively 
robust classifier from several weak classifiers. The difference with other ensemble techniques is that 
in boosting, we build a series of trees, where every other tree tries to fix the mistakes made by its 
predecessor. Contrast this approach with how the random forest classifier performs decisions presented 
in the Contracting a decision tree section of Chapter 3, Classifying Topics of Newsgroup Posts. In that 
case, multiple trees are constructed in parallel using the bagging technique. Another distinctive 
characteristic of boosting algorithms is their ability to deal with the bias-variance trade-off discussed 
in the Applying regularization section of Chapter 4, Extracting Sentiments from Product Reviews. Let’s 
present the major boosting algorithms in the following sections.

Understanding AdaBoost

Adaptive Boosting (AdaBoost) was the first successful boosting algorithm for classification and 
regression problems. It commences by training decision trees with a single split, called a stump. It also 
uses the notion of weighting misclassified observations so that the next decision tree in the sequence 
pays more attention to the errors. All observations are weighted equally during the creation of the 
first decision stump. The image in Figure 8.7 visualizes the process of classifying data points using 
the AdaBoost algorithm:
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Figure 8.7 – AdaBoost visual example
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Suppose that in the presented toy example, the samples are pairs of two numbers, working hours, and 
the monthly income for different individuals. Each pair is annotated either with a happy or a sad smiley 
face. The algorithm creates a very shallow tree (T1) from the training data during the first iteration. The 
decision based on this stump is depicted with the horizontal line, y=6, so that a person receiving more 
than $6K per month is labeled with a happy face. The F1 model consists only of the specific decision 
tree. Unfortunately, this decision stump misclassifies three samples that are shown with the opaque 
fill. In the second iteration, a new stump is created (T2) that tries to rectify the previous errors. The 
incorrectly classified observations now carry more weight than the observations that were correctly 
classified. For this reason, the corresponding icons appear larger than the others. The vertical line, 
x=4, which is the stump’s outcome, corrects two errors.

Note that the F2 model is the sum of T1 and T2. Only one error remains unresolved during the third 
iteration, treated by the T3 stump. Another vertical line, x=12, separates the sad smiley faces from 
the happy ones. Finally, the new F3 model is the sum of T1, T2, and T3 that correctly classifies all the 
data points. Observe the sequence of trees and how the output of one tree is the input of the next. In 
practical problems, we expect that the final classifier has higher accuracy than all the weak classifiers 
involved. Let’s continue with another essential boosting algorithm.

Understanding gradient boosting
Gradient boosting is an extension of boosting, where gradient descent is used to boost weak models. 
A primary component of the algorithm is the loss function, such as the mean squared error for 
regression or the logarithmic loss function for classification. The only prerequisite is that the function is 
differentiable to apply gradient descent. Although many models can be used for weak learners, decision 
trees are almost always incorporated in practice. Compared to AdaBoost, which creates a stump of 
depth equal to 1, gradient boosting starts by making a single leaf, representing an initial guess of the 
model. Next, the first decision tree is created, usually larger than a stump. In practice, the method uses 
a maximum number of leaves between 8 and 32, and the tree construction happens sequentially, such 
as AdaBoost, which aims to rectify the errors of its predecessor. Therefore, an essential task during 
gradient boosting is to model specific errors appropriately.

Let’s continue with a numerical example demonstrating the previous steps in more detail. We use the 
gradient boosting variant for regression to facilitate the calculations, but the steps are symmetrical 
for classification. The toy dataset in Table 8.1 includes three attributes for predicting the price of a car:

Table 8.1 – Instances for determining a car’s price based on three attributes
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Gradient boosting begins by creating an initial guess of the price for each car that is simply the average 
of the price ($) column. The mean value is equal to $30,000 and constitutes the base model. Thus, if the 
algorithm stops at this step, the predicted price of each car would be that number (the 𝑦𝑦1̂  column). What 
is the residual (error) in this case? The residuals_1 column provides the answer based on the actual value 
– predicted value. For example, the error of the first car is 11,000 − 30,000 = −19,000 . Next, we build 
the first decision tree to predict the residuals shown in the table, and not the actual values (price ($)).

Figure 8.8 – The decision tree for gradient boosting

This choice seems counterintuitive, but adding residual predictions by a weak model to an existing 
model’s approximation nudges the model toward the correct target. The constructed tree is shown in 
Figure 8.8, where we restrict the number of leaves to four.

Note that we average their values when there is more than one residual element in a leaf. Next, we 
can perform new predictions based on the two components: the one-leaf (base) model and the newly 
created decision tree. For example, the new prediction for the fifth car in the dataset is the following:

The learning rate factor scales the tree and leads to a small step in the right direction. Empirically, the 
small steps prove to be beneficial for the model by reducing its variance. So, using the two models, we 
managed to get slightly better predictions for all observations (the 𝑦𝑦2̂  column). The new errors shown 
in the residuals_2 column reflect that we are heading in the correct direction. We contract a new tree 
based on these errors, and the same process repeats. There is no need to show all the steps, but hopefully, 
you got the basic idea. To summarize, constructing a chain of trees eventually leads to a model that can 
successfully predict the samples of the training set (low bias) and the unseen observations (low variance). 
Figure 8.9 illustrates how the different models, F0–F4, are chained in gradient boosting:

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 30,000 + 0.1 ∙ 16,500 = 31,650 
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Figure 8.9 – Chained models in gradient boosting

In the specific example, a learning rate of 0.1 is used, but this is a hyperparameter that we need to 
adjust through experimentation. Moreover, the topology of the decision trees can differ between the 
iterations. Models are added sequentially until no further improvement in the performance can be 
made. A good intuitive example is to think of a golfer whacking a golf ball toward a hole. After each 
shot, the golfer needs to compute the distance between their current position and the actual position 
of the hole. The calculated distance helps reassess the direction and magnitude of the next stroke 
to get closer to the hole. In this analogy, a stroke is like applying one of the F0–F4 models and the 
distance is the residual.

It’s now time to present the last boosting algorithm to be used for the main problem of this chapter.

Understanding XGBoost

XGBoost stands for eXtreme Gradient Boosting, a popular and efficient open source implementation 
of the gradient boosting tree algorithm. In recent years, it has been a favored choice in various Kaggle 
competitions, helping people win significant prizes. XGBoost can be used for regression, classification, 
and ranking problems. The method builds upon the concepts of supervised machine learning, decision 
trees, ensemble learning, and gradient boosting already presented throughout the book. To understand 
the mechanics behind the algorithm, let’s examine it in more detail with an example.

Tip
Kaggle is an online community of data scientists and machine learning enthusiasts. It offers a 
platform for sharing ideas, learning through examples, competing against other practitioners, 
accessing real-world datasets, and much more. Consider creating an active Kaggle profile to 
gain exposure to the community and recruiters.
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Once again, we use a minimal toy dataset to facilitate the computations. Table 8.2 shows five instances 
of students that relate them passing a particular exam and the hours spent studying:

Table 8.2 – Instances for determining student success based on studying time

Too much studying can also be a reason for failure, as the instance for the fourth student demonstrates. 
As we did in the previous section, we start with the base model. As we are dealing with a binary 
classification problem, there are only two possible outcomes, 0 (fail) and 1 (pass). A common approach, 
in this case, is to choose their average as the initial prediction of the base model (𝑃𝑃1 ). So, the model 
predicts a 50% chance of passing the exam – not very useful information! Next, we calculate the 
residuals by subtracting from the pass column the 𝑃𝑃1  one. The result is stored in residuals_1. Let’s 
now fit a tree to the residuals, putting at the root the hours attribute. There are various options to 
consider for its threshold, and two of them are shown in Figure 8.10:

Figure 8.10 – Decision trees for the XGBoost
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So, which of the two should we use? As we did in the Contracting a decision tree section of Chapter 3, 
Classifying Topics of Newsgroup Posts, we need to calculate some gain value. In the XGBoost case, we 
utilize a quantity named similarity score, given by the following equation:

The term λ is a regularization parameter, and for convenience, let’s make it zero. Regularization, as 
we already know, reduces the model’s sensitivity to individual observations and therefore decreases 
overfitting. The probably P is the previous prediction of the model (initially the base model), equal to 
0.5 in our example. For the lower leaf of the left tree, the equation yields the following:

Figure 8.10 includes all the other similarity scores. To determine the best split in the tree, we compute 
the gain defined as the following:

So, for the left tree, the gain is equal to0.33 + 2 − 0.2 = 2.13 , and for the right tree, equal to 
0 + 0.33 − 0.2 = 0.13 . Based on this information, the tree with the higher gain is chosen, but we 
must experiment with many thresholds to elicit the best option. The used dataset is very simple, so 
we obtain a shallow tree. In practice, however, the datasets contain many features, resulting in very 
deep trees that must be pruned. A relevant metric, in this case, is given by the following equation:

The cover value determines whether the pruning of a branch should take place. So, if the gain is greater 
than the cover, we can continue further splitting the branch; otherwise, the branch is cut. Note again 
that P is the previously predicted probability (=0.5 in the example). For the left lower leaf in the figure, 
the cover value is equal to 0.5 ∙ (1 − 0.5) + 0.5 ∙ (1 − 0.5) + 0.5 ∙ (1 − 0.5) = 0.75 . The outcome is 
less than the gain, so we can move on to splitting the branch, either using another threshold for the 
same feature or another feature if present in the dataset.

It’s now time to extract the new predictions using the left tree of Figure 8.10 and the following formula 
for the outputs of the model:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
(∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)2

∑[𝑃𝑃 ∙ (1 − 𝑃𝑃)] + 𝜆𝜆 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (0.5 + 0.5 − 0.5)2

0.5 ∙ (1 − 0.5) + 0.5 ∙ (1 − 0.5) + 0.5 ∙ (1 − 0.5) + 0 = 0.33 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = ∑[𝑃𝑃 ∙ (1 − 𝑃𝑃)] 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
∑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

∑[𝑃𝑃 ∙ (1 − 𝑃𝑃)] + 𝜆𝜆 
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The outputs of the two branches are, therefore, the following:

As we did with gradient boosting, we have to add the output of the tree scaled by a learning rate (=0.3 
by default) to the initial prediction. In this case, however, we need to convert the latter to log odds 
using the following equation:

So, the new predicted value for the first student is the following:

To convert the previous quantity back to a probability, we use the following formula:

The 𝑃𝑃2  column contains the new prediction for each instance, which shows we are moving in the 
correct direction. The residuals_2 column holds the difference between pass and 𝑃𝑃2 . In the next 
iteration, we train another tree to learn the residuals. As we did with gradient boosting, we can 
conclude the presentation of XGBoost here. Hopefully, all the previous numerical examples provide 
a better understanding of the algorithm. We can finally put XGBoost into action in the next section.

Classifying with XGBoost

Before using the method, we need to split our samples into a training set and a test set, using 
an 80:20 split:

import numpy as np

from sklearn.model_selection import train_test_split

# Create the train and test sets.

X_train, X_test, y_train, y_test = train_test_

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
0.5 + 0.5 − 0.5

0.5 ∙ (1 − 0.5) + 0.5 ∙ (1 − 0.5) + 0.5 ∙ (1 − 0.5) + 0 = 0.66 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 =
−0.5 − 0.5

0.5 ∙ (1 − 0.5) + 0.5 ∙ (1 − 0.5) + 0 = −2 

log(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) = log ( 𝑃𝑃
1 − 𝑃𝑃) = log ( 0.5

1 − 0.5) = 0 

log odds(𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜𝑜𝑜) =  log 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0 + 0.3 ∙ 0.66
= 0.19 

𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒log (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)

1 + 𝑒𝑒log (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑒𝑒0.19

1 + 𝑒𝑒0.19 = 0.55 
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split(data['pooled'], data['class'], test_size=0.2, 
stratify=data['class'], random_state=123)

print("Number of samples in the training set:", len(X_train))

print("Number of samples in the test set:", len(X_test))

>>

Number of samples in the training set: 19826

Number of samples in the test set: 4957

Next, we create the model and fit it to the training data:

from xgboost import XGBClassifier

from sklearn.metrics import accuracy_score

# Fit the model to the training data.

model = XGBClassifier()

model.fit(np.vstack(X_train), y_train)

Finally, we can evaluate its performance:

# Extract the predictions using the test data.

y_pred = model.predict(np.vstack(X_test))

predictions = [round(value) for value in y_pred]

# Evaluate the predictions.

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy*100.0))

>> Accuracy: 83.92%

An accuracy equal to 83.93% is impressive, considering that we didn’t apply any fine-tuning to the 
BERT model. The specific task is still pending, but before we move to that, let’s present another crucial 
topic in machine learning.
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Creating validation sets
Throughout the book, we mentioned many times that we need to experiment with multiple configurations 
of the models to find the optimal one. The most typical pipeline is adjusting the hyperparameters and 
the topology of deep learning architecture, training on a set of samples, and testing on another set. For 
that reason, machine learning is a highly iterative process. This strategy engenders a particular risk, 
however. Evaluating different model configurations with a given test set over multiple rounds leads to a 
model tuned to work well with the specific set. As the number of epochs increases, we implicitly fit the 
model to the peculiarities of the test set and consequently get a too-optimistic performance in the end.

We need a way to validate our model performance during training while leaving the test set for the final 
evaluation. This role is undertaken by the validation set that helps us tune the model’s hyperparameters 
and configurations accordingly. As a result, the model learns the patterns from the training samples 
without overfitting. Recall that we cannot use the training set to test a model because it might have 
memorized the training samples. On the other hand, the validation set creates a model bias and is 
unsuitable for evaluating its generalization performance. The test set keeps unseen samples in the 
model until the very end, which is why it can offer an honest assessment of the final model.

Learning the myth of Icarus

To understand the synergies between the three sets, consider an analogy based on the famous myth 
of Daedalus and Icarus. Daedalus, the mythical master craftsman, created the Labyrinth for King 
Minos. His young son, Icarus, wanted to leave Crete but was prevented by Minos. For this reason, 
Daedalus created wings out of feathers and wax for his son to escape. Icarus, however, ignored his 
father’s warnings and flew too close to the sun, causing his wings to melt and his subsequent fall into 
the sea. How does this story relate to the discussion of this section?

Based on his experience, the craftsman could approximate how close to the sun you could fly before 
the wings’ wax melts. This information is the prior knowledge used to create a model and constitutes 
the training set. On the other hand, the wax melting point can be affected by other factors, such 
as environmental conditions during the flight. Therefore, we need a way to fine-tune the model’s 
parameters over multiple iterations to compensate for those variations. At this point, the validation 
set comes into the scene and provides an unbiased evaluation of how well the model fits the data. 
Finally, the test set evaluates the model’s performance on unseen data – in our analogy, the moment 
Icarus spreads his wing toward the sky and begins his last flight.

Based on the unfortunate outcome of the model (Icarus falling), we can deduce that both the training 
and validation sets were not representative enough for the wax-wing problem, underestimating the 
impulsive nature of youth.
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Extracting the datasets

In Python, there is no direct way to extract the three datasets in one step, so we need to perform a 
small trick. First, we call the train_test_split method to get the training and test sets from 
the corpus and then call the same method on the training set to create the validation one. We have 
done the first step a few times already:

import numpy as np

from sklearn.model_selection import train_test_split

# Create the train and test sets.

X_train, X_test, y_train, y_test = train_test_
split(data['tweet'], data['class'], test_size=0.1, 
stratify=data['class'], random_state=123)

Now, the training set contributes to the creation of the validation set:

# Split the train set into validation and smaller training 
sets.

X_train, X_val, y_train, y_val = train_test_split(X_train, y_
train, test_size=0.1, stratify=y_train, random_state=123)

print("Number of samples in the training set:", len(X_train))

print("Number of samples in the validation set:", len(X_val))

print("Number of samples in the test set:", len(X_test))

>>

Number of samples in the training set: 20073

Number of samples in the validation set: 2231

Number of samples in the test set: 2479

So, at this point, we have at our disposal the three sets to continue the analysis. But how can they 
be used in practice? A typical technique is to contrast the model’s performance on the training and 
validation sets before deciding on the various trade-offs. A convenient way to perform this task is by 
plotting the loss after each training round, as shown in Figure 8.11:
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Figure 8.11 – Training versus validation loss

The plots present the conditions of underfitting, good fitting, and overfitting. When both losses steadily 
decrease, or when both remain flat and high, we face Underfitting. We can just let the model train for 
more time in the first case. In the second case, we can increase the model’s number of parameters or 
its complexity and type. Conversely, Overfitting occurs when the two losses diverge; the training loss 
decreases while the validation increases. As a result, the model learns the training data very well but 
begins to lose its generalization capacity. Ideally, we would like to be in the area of Good fit, and for 
this to happen, we can halt the training process when the two losses start to diverge. This technique, 
a form of regularization, is known as early stopping.

Hopefully, you should be convinced about the utility of a validation set. But one more problem is still 
to be resolved, discussed in the next section.
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Treating imbalanced datasets
The pending issue from the beginning of the chapter concerns the preliminary observation that the 
dataset is imbalanced. Specifically, the class distribution has a severe skew, as the offensive tweets prevail 
in the corpus. Training machine-learning models without mitigating this concern engenders the risk 
of having a strong bias toward the majority class. A possible strategy to address this problem is to 
perform random oversampling by randomly duplicating examples in the minority class. Conversely, 
we can randomly delete examples in the majority class using random undersampling. In both cases, 
applying re-sampling strategies leads to more balanced data distributions.

In this section, we attack the problem differently and use class weighting. Based on the number of 
instances in each class, we calculate weights that the model can use to pay more attention to examples 
from the underrepresented classes:

# Calculate the number of instances per class.

hate, offensive, neither = np.bincount(data['class'])

total = hate + offensive + neither

# Assign a weight per class.

weight_for_0 = (1 / hate)*(total)/3.0

weight_for_1 = (1 / offensive)*(total)/3.0

weight_for_2 = (1 / neither)*(total)/3.0

The weights are kept for later usage:

# Combine all weights into a dictionary.

class_weight = {0: weight_for_0, 1: weight_for_1, 2: weight_
for_2}

print('Weight for class 0: {:.2f}'.format(weight_for_0))

print('Weight for class 1: {:.2f}'.format(weight_for_1))

print('Weight for class 2: {:.2f}'.format(weight_for_2))

>>

Weight for class 0: 5.78

Weight for class 1: 0.43

Weight for class 2: 1.98

Based on the output, we observe that the underrepresented class for hate speech receives the highest 
weight (=5.78). In the next section, we combine the various topics presented so far to create a BERT 
model for classification.
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Classifying with BERT
While BERT was put in action previously in the chapter, we didn’t perform any fine-tuning tasks 
using our dataset. So, this step is part of the current section. Moreover, we need to create a neural 
architecture consisting of several parts to perform classification. The build_classifier_model 
method that follows shows the structure of the specific architecture:

# Method to build the classifier model.

def build_classifier_model():

  text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, 
name='text')

  preprocessing_layer = hub.KerasLayer(tfhub_handle_preprocess, 
name='preprocessing')

  encoder_inputs = preprocessing_layer(text_input)

  encoder = hub.KerasLayer(tfhub_handle_encoder, 
trainable=True, name='BERT_encoder')

  outputs = encoder(encoder_inputs)

  net = outputs['pooled_output']

  net = tf.keras.layers.Dropout(0.1)(net)

  net = tf.keras.layers.Dense(3, activation="softmax", 
name='classifier')(net)

  return tf.keras.Model(text_input, net)

The structure of the model consists of an input layer, a preprocessing layer, a stack of encoders, a 
dropout layer, and a classification layer. Most of them should be familiar to you, so let’s address a few 
key points. First, notice that BERT is fine-tuned by the text data included in encoder_inputs.

Dropout refers to dropping out units (both hidden and visible) in a neural network. More technically, 
dropout ignores randomly selected neurons during the forward and backward training passes. The 
reason for using this regularization technique is to attack overfitting by reducing the interdependent 
learning among the neurons. The dropout layer receives as input the embedding of each tweet 
(pooled_output).

The final dense layer takes the output of the dropout layer and normalizes the likelihood of each tweet 
being classified in one of the three classes using the softmax function. The number of trainable 
parameters in this setting is given here:

# Build the classifier model.

classifier_model = build_classifier_model()
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classifier_model.summary()

>>

...

Total params: 28,765,188

Trainable params: 28,765,187

Non-trainable params: 1

We can also visualize the structure of the model and store the output in a file:

# Save the model architecture into a file.

tf.keras.utils.plot_model(classifier_model, to_file='./data/
bert-model.png')

The building blocks of the model are illustrated in Figure 8.12:

Figure 8.12 – Model architecture

Then, we convert the three datasets to a tf.data type because it provides flexibility in handling 
the data in TensorFlow:

# Create the three datasets.

train_ds = tf.data.Dataset.from_tensor_slices((X_train, y_
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train))

val_ds = tf.data.Dataset.from_tensor_slices((X_val, y_val))

test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test))

# Combine consecutive samples into batches.

train_ds = train_ds.shuffle(len(X_train), seed=1).batch(32, 
drop_remainder=False)

val_ds = val_ds.shuffle(len(X_val), seed=1).batch(32, drop_
remainder=False)

test_ds = test_ds.shuffle(len(X_test), seed=1).batch(32, drop_
remainder=False)

Let’s define the loss function using accuracy as a metric. In this case, we compute the cross-entropy 
loss between the labels and predictions:

# Define the loss function and metric.

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_
logits=False)

metrics = tf.keras.metrics.
SparseCategoricalAccuracy('accuracy')

Then, we set a few important parameters for the optimizer and proceed to the compilation of the model:

# Set the different parameters for the optimizer.

epochs = 15

steps_per_epoch = tf.data.experimental.cardinality(train_ds).
numpy()

#steps_per_epoch = len(X_train)

num_train_steps = steps_per_epoch * epochs

num_warmup_steps = int(0.1*num_train_steps)

init_lr = 3e-5

optimizer = optimization.create_optimizer(init_lr=init_lr, num_
train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, 
optimizer_type='adamw')

# Compile the model.

classifier_model.compile(optimizer=optimizer, loss=loss, 
metrics=metrics)

The model is now in place to proceed to the next step.
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Training the classifier

Finally, we can start training the classifier. While fitting the model to the data, we use class_weight 
to make the classifier heavily weighted toward the minority classes:

print(f'Training model with {tfhub_handle_encoder}')

# Train the model.

history = classifier_model.fit(x=train_ds, validation_data=val_
ds, epochs=epochs, class_weight=class_weight)

>>

Training model with https://tfhub.dev/tensorflow/small_bert/
bert_en_uncased_L-4_H-512_A-8/1

Epoch 1/15

628/628 [==============================] - 744s 1s/step - loss: 
0.8942 - accuracy: 0.6384 - val_loss: 0.6206 - val_accuracy: 
0.7701

...

Epoch 7/15

628/628 [==============================] - 727s 1s/step - loss: 
0.1926 - accuracy: 0.9498 - val_loss: 0.5015 - val_accuracy: 
0.8714

...

Epoch 15/15

628/628 [==============================] - 740s 1s/step - loss: 
0.0384 - accuracy: 0.9916 - val_loss: 0.7343 - val_accuracy: 
0.8969

The performance after 15 epochs is as follows:

loss, accuracy = classifier_model.evaluate(test_ds)

print(f'Loss: {loss}')

print(f'Accuracy: {accuracy}')

>>

Loss: 0.7823630571365356

Accuracy: 0.8951190114021301

The accuracy is equal to 89.5%, which is better than the accuracy obtained in the Classifying with 
XGBoost section. We can also extract the model’s prediction using three example tweets from the test set:

# Use three examples from the test set.

examples = [



Classifying with BERT 331

    'I hate the ghetto trash at the special school across 
the street from my building. All of them will grow up to be 
criminals.',

    'God my tweets are so ghetto',

    'i wanna go to the ghetto club tonight.']

# Predict the classes of the examples.

result = classifier_model.predict(examples)

y_pred = np.argmax(result, axis=-1)

print(y_pred)

>>

[0 1 2]

The output suggests that all three examples received the correct label. The first example is classified 
with the hate speech label (=0), the second as offensive speech (=1), and the third as neither (=2).

Applying early stopping

However, did we perhaps miss an important step and miss applying early stopping? In the code that 
follows, we generate the loss and accuracy plots for the training and validation sets:

# Print the training and validation accuracy and loss.

history_dict = history.history

acc = history_dict['accuracy']

val_acc = history_dict['val_accuracy']

loss = history_dict['loss']

val_loss = history_dict['val_loss']

epochs = range(1, len(acc)+1)

# Show the first plot.

plt.plot(epochs, loss, 'r', label='Training loss')

plt.plot(epochs, val_loss, 'b', linestyle='None', marker='o', 
label='Validation loss')

# Show the second plot.

plt.plot(epochs, acc, 'r', label='Training acc')
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plt.plot(epochs, val_acc, 'b', linestyle='None', marker='o', 
label='Validation acc')

The output is shown in Figure 8.13:

Figure 8.13 – Plots of the training and validation loss and accuracy
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According to the previous output, we should apply early stopping after the seventh epoch, when the 
validation loss starts to increase. At this point, the accuracy for the training set is 94.98% (recheck 
the output after training the model). Another interesting observation comes from the second plot. 
Although the loss for the validation set increases, the relevant accuracy remains the same. How can 
this be correct?

To decipher this mystery, we need to understand what each quantity measures. Loss computes the 
difference between the prediction and the actual value. Accuracy, however, measures the difference 
between a threshold and the actual value. For accuracy to change, we need to move above or under 
the threshold, making it more resilient to changes. So, as the model overfits, the loss increases in the 
validation set, but the model can still predict correctly the same instances.

The following section concludes the current chapter and discusses an important neural network.

Understanding CNN
A convolutional neural network (CNN or ConvNet) is a category of neural network. It can include 
one or more convolutional layers capable of efficiently processing spatial patterns in data with a 
grid-like topology. Therefore, CNNs find extensive utility in image-processing applications that work 
with two-dimensional image data. The layers are arranged in such a way as to detect simpler or more 
complex patterns.

For example, in an image classification task, the first layers can identify simpler features such as lines 
and arcs. In contrast, the layers, further along, can detect patterns such as part of a face or an object. 
So, a CNN made of a single layer can only learn low-level features, and in typical applications, we 
stack more than one. The plot in Figure 8.14 illustrates this process:

Figure 8.14 – Stacking convolutional layers

Each convolutional layer of the network includes a set of kernels, also known as filters, that aim to extract 
different features from the input. In First ConvNet, for example, we observe six filters to detect the 
different edges of the image. Their output is fed to Second ConvNet to identify higher-level features, 
such as an eye or fingers. Finally, the last layer can detect more complex patterns based on the output 
of the second layer. Note that none of the filters are predefined, and it’s up to the neural network to 
extract its kernels during the training phase. The developer can only set the number of filters, their 
size, and a few other parameters discussed later.
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Let’s now examine the function of each filter in more detail. A filter is essentially a small window that 
slides across an image, applying an operation called convolution. This is a linear operation, depicted 
with the * symbol, and involves the multiplication of the set of weights of the filter with the input. 
Figure 8.15 presents an example of the specific operation:

Figure 8.15 – The convolution operation

Imagine that K is superimposed over I and slides one step either horizontally or vertically at each time 
step. The cells of the output matrix (I*K) result from performing element-wise multiplication with 
the part of the input that the filter is on. Later, this quantity is summed. Multiple filters exist in each 
convolutional layer, and their weights can be learned through backpropagation. Apart from the kernel 
size (in the previous example, equal to two), we can also set two important hyperparameters, namely 
the stride and padding. Stride refers to the filter’s step as it slides over the input. A stride equal to one 
was used in the previous example, while another standard option is a two-step stride. Incorporating 
too large values engenders the risk of skipping important information in the input matrix. On the 
other hand, there are fewer calculations, which increases speed.

In the example of Figure 8.15, the 4x4 input matrix convolved with the filter to produce a 3x3 output. If 
we wanted to obtain an output matrix that is the exact same size as the input one, we can apply a simple 
trick: pad the input with zeros around the edges. In this case, part of the kernel can overlay outside the 
initial input matrix and use the zero values for the convolution calculations. Adding padding allows a 
more accurate input data analysis and prevents shrinkage. On the other hand, applying convolution 
without padding reduces the dimensions of the output matrix in each CNN layer to the extent that it 
would not be able to extract any features in the data.

Equipped with the understanding of the convolution operation, let’s examine in more detail the steps in 
a convolutional layer. Suppose we would like to process a 3x3 color image, which is just three matrices 
of pixels for each primary color: red, green, and blue. In the specific scenario, we incorporate one 
3x3 kernel for each color channel, using padding and a stride equal to one. Figure 8.16 demonstrates 
each of the steps:
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Figure 8.16 – Calculations in the convolutional layer
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Each input matrix is convolved with the same filter that detects vertical lines in images. The output is 
summed and passed through an activation function, including a bias term. The result is an activation 
map, also known as a feature map, that defines which information is passed to the next layer.

Images offer a convenient way to understand how convolution works, but how can we intuitively 
relate the same function to text data? At first glance, this is not so straightforward. Texts have only one 
dimension, unlike images, and the convolution, in this case, is one-dimensional. As each filter detects 
a pattern such as a line or texture in an image, a text pattern can be a short phrase. You can think of 
these phrases as n-grams that activate the relevant filter. Therefore, using CNNs for text classification 
yields learning filters that can identify n-grams. Before using this layer to address the problem of this 
chapter, we need to introduce one more topic.

Adding pooling layers

Convolutional networks frequently work in tandem with another layer type called the pooling layer to 
generate less complex models. It aims to retain the important information of the features extracted from 
the ConvNet and discard the less important ones. In practice, this leads to fewer model parameters, 
speeding up computation and reducing the risk of overfitting. The most common variants of this 
method are max, average, and sum pooling.

In the case of max pooling, we define a spatial neighborhood and extract the largest value of the 
rectified feature map inside this area. We can also take the average of these numbers or their sum. In 
most practical applications, max pooling is chosen. An example is shown in Figure 8.17, using a 4x4 
activation map, a 2x2 window, and a stride equal to 2:

Figure 8.17 – The max pooling operation

To conclude, the convolution operation aims to extract matches with patterns while pooling aggregates 
of these matches over different positions. Let’s now proceed to add the CNN layers to the model.



Understanding CNN 337

Including CNN layers

To incorporate the CNN layers, we will use the same structure for the neural network, including a 
few more components, as shown in the following code:

def build_classifier_model():

 ...

  outputs = encoder(encoder_inputs)

  net = sequence_output = outputs["sequence_output"]

  net = tf.keras.layers.Conv1D(128, (3), activation='relu')
(net)

  net = tf.keras.layers.Conv1D(64, (3), activation='relu')(net)

  net = tf.keras.layers.Conv1D(32, (3), activation='relu')(net)

  net = tf.keras.layers.GlobalMaxPool1D()(net)

  net = tf.keras.layers.Dense(512, activation="relu")(net)

...

  return tf.keras.Model(text_input, net)

Specifically, three 1D convolution layers are added, using 128, 64, and 32 filters respectively, and 
with a 3x3 kernel size. We also apply max pooling and feed the output to a dense layer with 512 
units. Also, note the usage of sequence_output from the BERT output for experimenting with 
the new architecture. Next, we will plot the architecture of the model:

tf.keras.utils.plot_model(cnn_classifier_model, to_file='./
data/bert-cnn--model.png')
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The output is shown in Figure 8.18:

Figure 8.18 – Model architecture (CNN)

The rest of the code remains unaltered, and we can proceed to the training phase:

print(f'Training model with {tfhub_handle_encoder}')

# Train the model.

history = classifier_model.fit(x=train_ds, validation_data=val_
ds, epochs=epochs, class_weight=class_weight)

>>

...

Epoch 7/15

628/628 [==============================] - 753s 1s/step - loss: 
0.2343 - accuracy: 0.9388 - val_loss: 0.3681 - val_accuracy: 
0.8991

...

Epoch 15/15

628/628 [==============================] - 733s 1s/step - loss: 
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0.0566 - accuracy: 0.9890 - val_loss: 0.6212 - val_accuracy: 
0.9014

As we did previously, we plot the loss for the training and validation sets, shown in Figure 8.19:

Figure 8.19 – The plot of the training and validation loss

We do not observe any significant difference, and the addition of CNN layers didn’t offer any tangible 
improvement. As we have mentioned multiple times throughout the book, choosing the correct values 
for the hyperparameters and the neural network topology is a matter of experimentation. Coupled 
with the validation set, we have one more powerful way to control the training process.

Summary
This chapter focused on identifying hate and offensive language in tweets. Considering the intriguing 
nature of the specific task, we tried to provide a strong model from a technical perspective. In this 
respect, we had the opportunity to work with more advanced neural architectures and also strengthen 
our knowledge of new ML concepts.

Throughout the chapter, we had the opportunity to observe the benefits of transfer learning, which allow 
the construction of sophisticated applications with minimal effort. The BERT language model is a typical 
example and permits the fine-tuning of pre-trained models with our custom datasets. This chapter focused 
on more advanced techniques for text classification that belong to the family of boosting algorithms, 
particularly XGBoost, the hype of which was driven by its superior performance in various competitions.
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The role of the validation set to fine-tune the model’s hyperparameters and the strategies to deal with 
imbalanced data was an essential part of the chapter. Finally, we concluded with the presentation of 
convolutional layers, which are specialized to detect patterns in spatial data, such as images, but can 
also be applied in text processing.

The next chapter deals with another booming area in machine learning for text: chatbots.



9
Generating Text in Chatbots

Cutting-edge artificial intelligence applications can now produce uncannily humanlike creations, from 
written essays to music and drawings. These applications are a great promise toward artificial general 
intelligence, to the point where machines understand or learn any intellectual task that humans can 
perform. Unhindered conversation with a machine has always been at the forefront of this vision. 
Interestingly, the most common depiction of machine intelligence in popular culture is conversational 
agents that can mimic human dialogs. In this chapter, we will deal with a particular type: chatbots.

Chatbots have received much hype in recent years; in this chapter, we will discuss related topics from 
the perspective of natural language generation. Particular emphasis is given to language modeling, 
which is an integral part of modern chatbot deployments. First, we will look deeper at this core 
component of modern natural language processing and contrast two approaches based on the 
transformer architecture. Then, we will put this knowledge into action by building a language model 
from scratch and evaluating its performance on a publicly available corpus.

In the last section of this chapter, we will examine how to use pre-trained language models to create 
a chatbot. Transfer learning, in this case, is a safety net, allowing us to adjust these models for any 
custom application. In this context, we will perform fine-tuning using techniques such as reinforcement 
learning. By the end of this chapter, you will be capable of creating a language model or fine-tuning 
a pre-trained one.

We will go through the following topics:

•	 Understanding the different types of chatbots

•	 Understanding, building, and fine-tuning language models

•	 Applying the proper evaluation metrics for language models

•	 Using tools to visualize the machine learning workflow

•	 Implementing graphical user interfaces
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Technical requirements
The chapter’s code has been truncated in certain parts to facilitate reading the content. However, the 
entire code is available as different Jupyter notebooks in this book’s GitHub repository: https://
github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/
tree/main/chapter-09.

Understanding text generation
Our access to various services gradually evolves to become technology-driven rather than human-
driven. Try to think of the last time you contacted the call center of a company, where an automated 
system probably answered your call. Replacing the human factor presents many competitive advantages 
in terms of cost and availability. However, these systems do not fully incorporate the communicative 
behaviors humans use and therefore are limited in reaching their full potential. The effort, in any case, 
is to create machines that are increasingly adept at sounding human and can pass the Turing test, 
which has long been a benchmark for machine intelligence.

Interesting fact
In 1950, the ingenious computer scientist Alan Turing introduced a test to check whether a 
machine can consistently fool an interviewer into believing it is a human. Today, the test refers 
to a more general behavioral benchmark for the presence of intelligence.

Natural language generation (NLG) is an emerging research area that uses artificial intelligence to 
generate human language, and it’s a subcategory of natural language processing. NLG systems can 
be used in various contexts to describe an image with a short sentence, generate news feeds, or even 
spread personalized propaganda and misinformation. In this chapter, we will tackle the generative 
processes in natural language processing with a particular focus on conversational agents, also known 
as chatbots.

Chatbots find extensive usage in various tasks; for example, in large organizations, they answer customer 
queries; in education, they assist in teaching a new language; and in research, they gather data from real 
humans. Their input and output can utilize different communication channels, such as speech, text, or 
even facial expressions and gestures. Broadly, they can be categorized into two main types: retrieval 
and generative-based chatbots. Agents in the first category are used in closed-domain scenarios and 
rely on a collection of predefined responses to the user input. On the other hand, generative chatbots 
produce original combinations of phrases rather than selecting them from a list of options. As this 
chapter unfolds, we will present both types while focusing more on the second category.

The coding examples incorporate PyTorch (https://pytorch.org), another prevailing machine 
learning framework. Moreover, to facilitate the work on language modeling, we will utilize Hugging 
Face (https://huggingface.co/), which offers many state-of-the-art pre-trained models and 
datasets. In this way, we will significantly enhance our machine learning toolbox and skillset.

https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-09
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-09
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/chapter-09
https://pytorch.org
https://huggingface.co/
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Let’s begin by creating a retrieval chatbot.

Creating a retrieval-based chatbot
The implementation in this section is inspired by ELIZA (https://web.njit.edu/~ronkowit/
eliza.html), an early chatbot, and one of the first programs capable of attempting the Turing test. 
It simulated a psychotherapist in an initial psychiatric interview to demonstrate the superficiality of 
the communication between man and machine. The client performed the conversation using pattern 
matching and substitution methodology.

First, we need to set a list with possible patterns and the relevant responses using the code in the 
chatbot.ipynb notebook:

from nltk.chat.util import Chat, reflections

# Pairs of patterns and responses.

pairs = (

    (

        r"I need (.*)",

        (

            "Why do you need %1?",

            "Would it really help you to get %1?",

            "Are you sure you need %1?",

        ),

    ),

    (

        r"Why don\'t you (.*)",

        (

            "Do you really think I don't %1?",

...

The reason for using more than one answer (chosen randomly by the nltk module) is to make the 
dialog a little more engaging. Observe the %1 notation, which displays the match pattern inside, (.*).
The more patterns are included in the list, the more intelligent the interaction becomes. At the same 
time, however, it complicates how the chatbot can be managed. While crafting the translation rules 
in Chapter 6, Teaching Machines to Translate, we saw similar challenges. Both suffer from the same 
shortcoming: relying on scarce and costly human knowledge.

https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
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Next, to make the interaction even more interesting, we will define a set of substitution words:

# Substitute words in the string, according to the specified 
reflections, e.g. "I'm" -> "you are".

reflections = {

    "i am": "you are",

    "i was": "you were",

    "i": "you",

    "i'm": "you are",

    "i'd": "you would",

    "i've": "you have",

    "i'll": "you will",

    "my": "your",

...

For example, when the chatbot encounters the string I am in the input, it flips it to you are in the 
response. Now, let’s define the main method for chatting:

# Create the bot.

eliza = Chat(pairs, reflections)

# The main chat method.

def eliza_chat():

    print("Chat with Eliza!")

    print('Enter "quit" to stop.')

    print("---")

    print("Hello. How are you feeling today?")

    eliza.converse()

Finally, we can begin the conversation with the bot:

# Begin to chat.

eliza_chat()

>>

Chat with Eliza!

Enter "quit" to stop.

---

Hello. How are you feeling today?
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>I am feeling good!

Did you come to me because you are feeling good?

>Yes

You seem quite sure.

> I'm

Why do you say that you are?

>quit

Thank you for talking with me.

Here, we can observe reflections in action. The response to I’m ends with the phrase you are. 
Unfortunately, eliza is an elementary chatbot, which can hardly be scaled to support unhindered 
communication. So, in the rest of this chapter, we will explore state-of-the-art solutions for constructing 
conversational agents. As we have done several times already, we will begin with the necessary context 
before proceeding to the implementation. In the following section, the discussion is around the critical 
topic of language modeling.

Understanding language modeling
Language models are key ingredients for creating chatbots and many natural language processing 
applications. In the Modeling the translation problem section of Chapter 6, Teaching Machines to 
Translate, we stated that a language model expresses our confidence that a sentence is probable in 
the target language. Probability in this context does not necessarily refer to whether a sentence is 
grammatically correct but how it resembles how people write. Essentially, a language model learns 
from text resources, which can contain ungrammatical sentences, misspelled words, slang, biases, 
and so forth. Therefore, it is a probability distribution over words or word sequences derived from 
the training corpus.

In simple terms, the objective is to predict the next word, given all previous words within some text. 
A familiar example is the autocomplete feature in Google’s search bar, which allows you to construct 
search queries. In this chapter, we will revisit language models to provide a broader understanding 
of this fundamental concept in natural language processing. Again, the focus is on text generation 
systems, which is where these models shine.

In Chapter 8, Detecting Hateful and Offensive Language, we discussed how state-of-the-art models, 
such as BERT, can be incorporated into a neural network to facilitate text classification. While BERT 
utilizes a stack of encoders to create the model, other architectures are very similar to the decoder-only 
transformer. One of the most prominent options is Generative Pre-Trained Transformer 2 (GPT-2), 
with 1.5 billion parameters trained on a corpus of 8 million scraped web pages. As in BERT, there are 
many variants of GPT-2 in terms of size, the smaller of which takes up 500 MB of storage, while the 
largest is 6.5 GB. Besides their main difference in using either an encoder or a decoder architecture, 
the two models differ in another significant way.
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GPT-2 works like a traditional language model as it outputs one token at a time. This output token 
is added to the sequence of inputs in the next time step. Models, where the observations from the 
previous time steps are used to predict the value at the current one, are called autoregressive. On 
the other hand, BERT is not autoregressive, as it uses the entire surrounding context. The masking 
mechanism that’s incorporated during the training phase corrupts a few input tokens and directs 
BERT to find the words that better predict the masked ones. Reconstructing the initial input is what 
autoencoders do, so BERT is an autoencoding model. A relevant discussion can be found in the 
Introducing autoencoders section of Chapter 5, Recommending Music Titles.

You are probably wondering which option is better for a given problem. Without providing a conclusive 
answer, the natural application for the autoencoding models is text classification because they build 
a bidirectional representation of the input. By contrast, the autoregressive models only know what 
they have seen so far in the input, so they are suitable for text generation. In this chapter, we will use 
the second option to create our chatbots. But first, let’s discuss a related topic.

Understanding perplexity

In the previous chapters, we came across various automatic metrics for assessing the performance of 
natural language processing systems, such as the Word Error Rate (WER) and the Recall-Oriented 
Understudy for Gisting Evaluation (ROUGE) scores. On the other hand, recruiting human subjects 
is an attractive alternative because it permits measuring performance using specific target groups 
on real-world tasks. For example, professional translators can better access the translation quality 
instead of a metric such as the BiLingual Evaluation Understudy (BLEU) score. Nevertheless, this 
manual assessment comes with a price, as human evaluations are costly, slow, and often generate 
inconsistent results. As a result, it is not uncommon to use both automatic and manual approaches 
to assess the intermediary and the final objectives of an NLP system, known as intrinsic and 
extrinsic evaluation, respectively.

In language modeling, we can perform an extrinsic evaluation by letting the model generate a large 
number of sentences and asking human annotators to rate each one. In this case, the main challenge 
is deciding which of the model’s different variants to evaluate based on their configuration. Adjusting 
the model’s hyperparameters, an essential part of the training phase, leads to a new set of output 
sentences that needs to be rated. In practice, we can carry out a small fraction of human evaluations, 
making it hard to elicit the most efficient language model.

A convenient alternative, in this case, is some intrinsic property of the model to estimate its quality 
independently of the tasks it has to perform. Consider the following analogy: a small number of 
college students must be selected for the basketball team. Height is an intrinsic property of each 
student. An increased height does not guarantee higher basketball performance but correlates well. 
Therefore, first, we can evaluate all students solely on their height and pick a small fraction for the 
actual draft on the court.

A commonly used intrinsic metric to evaluate language models is perplexity (PPL). Intuitively, 
it tells us how perplexed the model is after encountering a piece of text. The smaller the model’s 
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surprise, the better its performance. Measuring the complexity using PPL is suitable because it lets 
us compare different models on the same corpus. In the next section, we will consider an example 
to clarify this concept.

Introducing a numerical example

Suppose that we have a slot machine with five vertical reels that spin, as shown in Figure 9.1:

Figure 9.1 – Slot machine with equiprobable symbols

The slot machine is a model that can output a discrete random variable using 10 different symbols in 
each reel (such as cherries, dice, and so on). So, we can say that the vocabulary of the slot machine is 
equal to 10. The number of possible next symbols that can follow any symbol is equal to the vocabulary 
size, and it’s called the branching factor. In the simplest scenario, the output in each reel is independent 
of the other, just like in a unigram language model.

Four possible outcomes of this process are shown in the preceding figure, which constitutes a tiny 
training set for the model. The random variable has a uniform probability distribution, as each symbol 
has an equal chance of appearing in the sequences (=2/20). In general, rare symbols (low probability) 
are more surprising than common symbols (high probability). To determine how surprised the model 
is upon encountering one of the symbols – for example, cherries – we can use a quantity that expresses 
the fact that surprising events provide more information:

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = − log2(𝑝𝑝(𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)) = − log2 (
2
20) = 3.32 
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Then, we can perform the same calculation for all symbols and combine the output to extract the 
entropy measure. Recall the discussion on measuring uncertainty in the Contracting a decision tree 
section of Chapter 3, Classifying Topics of Newsgroup Posts. The following formula gives us the entropy:

In our case, the equiprobable symbols yield the following value:

Finally, the perplexity is calculated by exponentiating entropy:

What does the previous result tell us? PPL, in this case, is equal to the initial vocabulary size. The 
model (slot machine) is as perplexed as if it had to choose randomly between 10 options. Therefore, 
PPL can be considered the model’s average branching factor.

Now, let’s see what happens when the symbols stop having the same probability, as shown in Figure 9.2:

Figure 9.2 – Slot machine with non-equiprobable symbols
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The new entropy is as follows:

The perplexity now becomes this:

𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋) = 2𝐸𝐸(𝑠𝑠) = 21.43 = 2.69 

The result suggests that the new model is much less perplexed as if it had to pick between 2.69 words 
at each reel. In general, obtaining models with lower PPL correlates well with better quality.

Understanding the perplexity of language models

The probability distributions for the different events were set in the previously contrived numerical 
example. However, a language model is an abstract, idealized description of the data-generating process 
in mathematical terms that tries to estimate the real probability distributions. For that reason, we must 
extract a revised formula for perplexity.

The first quantity to be calculated is the likelihood of a sequence with m tokens, which is the product 
of each token’s probability using the language model:

For example, considering the phrase I love pizza, we can calculate its likelihood:

Notice that a common problem when multiplying small quantities, such as probabilities, is that the 
number can become too small to be represented by a computer (causing an underflow). Thus, the 
trick is to transform multiplication into addition by taking the log of the likelihood:
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Normalizing the result, we get the cross-entropy loss function:

Recall from the Introducing linear regression section of Chapter 4, Extracting Sentiments from Product 
Reviews, that loss functions intuitively inform us about some cost associated with a decision. Furthermore, 
cross-entropy in language modeling helps while predicting the tokens. By exponentiating the previous 
quantity, we obtain perplexity:

While cross-entropy traditionally uses logarithm base 2 (b=2), deep learning frameworks such as 
PyTorch use the natural logarithm e (b=e).

Now that we’re equipped with a good understanding of the essential elements of perplexity, we can 
proceed to the coding part. To demonstrate these steps, we will calculate the PPL of a model through 
Hugging Face.

Calculating perplexity

In the code included in the perplexity.ipynb notebook, we measure the PPL of the gpt2 
model using three datasets:

import torch

from transformers import GPT2LMHeadModel, GPT2TokenizerFast

device = torch.device("cuda" if torch.cuda.is_available() else 
"cpu")

# Load the models.

model_name = "gpt2"

model = GPT2LMHeadModel.from_pretrained(model_name).to(device)

tokenizer = GPT2TokenizerFast.from_pretrained(model_name)

The PPL calculation consists of different steps:

1.	 First, we define a few initialization variables and then the appropriate method:

from tqdm import tqdm

𝐶𝐶𝐶𝐶 = − 1
𝑚𝑚∑𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥<𝑖𝑖)

𝑚𝑚

𝑖𝑖=0
 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋) = 𝑏𝑏𝐶𝐶𝐶𝐶(𝑋𝑋) = 𝑏𝑏−
1
𝑚𝑚∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥<𝑖𝑖)𝑚𝑚

𝑖𝑖=0  
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max_len = model.config.n_positions

#  Use at least 512 tokens for context.

stride = 512

# Calculate the perplexity of the model.

def calc_perplexity(encodings):

    stack = []

2.	 Then, we start reading the data using a sliding window for the context:

    for i in tqdm(range(0, encodings.input_ids.size(1), 
stride)):

        start_pos = max(stride-max_len+i, 0)

        end_pos = min(i+stride, encodings.input_ids.
size(1))

        trg_len = end_pos - i

        inp_ids = encodings.input_ids[:, start_pos:end_
pos].to(device)

        trg_ids = inp_ids.clone()

        trg_ids[:, :-trg_len] = -100

3.	 Now, we can calculate the negative log-likelihood:

        # Calculate the negative log likelihood.

        with torch.no_grad():

            out = model(inp_ids, labels=trg_ids)

            nll = out[0] * trg_len

        # Negative log-likelihood stack.

        stack.append(nll)

4.	 Finally, the method returns the calculated perplexity:

    return torch.exp(torch.stack(stack).sum()/end_pos)

Next, it’s time to evaluate the model on the three diverse datasets:

from datasets import load_dataset

# Load the dataset.

testset = load_dataset("wikitext", "wikitext-2-raw-v1", 
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split="test")

encodings = tokenizer("\n\n".join(testset["text"]), return_
tensors="pt")

print("The perplexity of the model: %.2f" % calc_
perplexity(encodings).item())

# Load the dataset.

testset = load_dataset("tiny_shakespeare", "default", 
split="test")

...

# Load the dataset.

testset = load_dataset("iamholmes/tiny-imdb", "iamholmes--tiny-
imdb", split="test")

...

The results are as follows:

The perplexity of the wikitext model is: 25.17

The perplexity of the tiny_shakespeare model is: 49.12

The perplexity of the tiny-imdb model is: 42.82

As GPT-2 was trained on Wikipedia data, we can observe that the measure on the relevant dataset 
is lower than the other two. However, notice that this can be partially attributed to the different 
vocabulary of the datasets, which artificially inflates perplexity. The main disadvantage of PPL is that 
making meaningful comparisons across datasets is not easy. Generally, each dataset has a distribution 
of words, and each model has different parameters. So, instead, we often contrast different models 
trained on the same dataset.

The takeaway message of this section is that PPL measures the model’s confidence, not its accuracy. 
So, it’s a proxy for calculating the model’s quality. It offers a convenient way to narrow the number of 
candidate models for a given problem, but it’s better to involve real subjects in the final evaluation. 
We can now proceed with implementing a language model from scratch.

Building a language model

First, we must choose an appropriate model architecture and a sufficiently large dataset to build a language 
model. This section’s implementation is based on the transformer architecture, which has proven to be 
very efficient for many sequence-to-sequence tasks. Thus, we will adopt the steps from the following 
tutorial: https://pytorch.org/tutorials/beginner/transformer_tutorial.
html. Using an off-the-shelf solution for the encoder layers abstracts many implementation details, 

https://pytorch.org/tutorials/beginner/transformer_tutorial.html
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
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making the code less dense and more comprehensible. Notice that all the steps are symmetrical with 
those presented in the Introducing transformers section of Chapter 7, Summarizing Wikipedia Articles, 
and you can always refer there for a quick revision. Finally, we will use the WikiText2 dataset, 
which is conveniently available from the torchtext library. The corpus is a collection of over 100M 
tokens extracted from various Wikipedia articles (https://blog.salesforceairesearch.
com/the-wikitext-long-term-dependency-language-modeling-dataset/).

To save some space, we haven’t included all the implementation details that can be found in the 
language_modeling.ipynb notebook, but we will discuss a few highlights that require more 
attention. First, let’s see the architecture of the transformer model:

class TransformerModel(nn.Module):

    def __init__(self, voc_size: int, emb_size: int, att_head: 
int, ffn_dim: int, layers_num: int, dropout: float = 0.5):

        self.model_type = 'Transformer'

        self.pos_encoder = PositionalEncoding(emb_size, 
dropout)

        encoder_layers = TransformerEncoderLayer(emb_size, att_
head, ffn_dim, dropout)

        self.transformer_encoder = TransformerEncoder(encoder_
layers, layers_num)

        self.encoder = nn.Embedding(voc_size, emb_size)

        self.emb_size = emb_size

        self.decoder = nn.Linear(emb_size, voc_size)

...

In this setting, we use only specific components from the modular transformer architecture of PyTorch. 
The network consists of an embedding layer, followed by the positional encoder. Next, two encoder 
layers are engaged (layers_num=2), while the linear layer with a log-softmax function emits the 
probability distribution of the output words. Recall that the aim here is to create a model that can 
assign a probability for a word’s likelihood to follow a specific word sequence.

To train the model, we will once again use cross-entropy loss and stochastic gradient descent as the 
optimizer. Specifically, the criterion computes the cross-entropy loss between the input and the target:

# Set the criterion.

criterion = nn.CrossEntropyLoss()

# Set the learning rate.

lr = 5.0

# Set the optimizer.

optimizer = torch.optim.SGD(model.parameters(), lr=lr)

https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/
https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/
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The original WikiText2 dataset is organized in pairs of input/target sequences in the form shown 
in Figure 9.3:

Figure 9.3 – Input/target pairs for training the model

In this case, the target is the same as the input shifted by one step (the second input sentence becomes 
the first target). Once more, we want the model to learn to output the correct word based on previous 
tokens. That is why we have this shift in the training pairs. The code that extracts the input and the 
target uses chunks of 35 sentences instead of three in the preceding figure:

bptt = 35

def obtain_batch(data: Tensor, i: int) -> Tuple[Tensor, 
Tensor]:

    chunk_len = min(bptt, len(data) - 1 - i)

    input = data[i:i+chunk_len]

    target = data[i+1:i+1+chunk_len].reshape(-1)

    return input, target

During training, we also store the best transformer model based on its performance on the validation set:

    if val_loss < best_val_loss:

        best_val_loss = val_loss

        best_transformer = copy.deepcopy(model)

The deepcopy method ensures that a new compound object is created (best_transformer) in 
which we recursively add copies of the items found in the original. A simple (shallow) copy engenders 
the risk of having changes in the model’s inner objects during training that affect the reference variables 
in the previously stored best_transformer object. Finally, the notebook includes two interesting 
techniques to facilitate the training process. We will examine both in the next two sections.

Dealing with the variations of gradient learning

The first technique applies to deep neural networks that use gradient learning and backpropagation. In 
the Understanding long short-term memory units section of Chapter 6, Teaching Machines to Translate, 
we discussed the vanishing gradient problem, where the partial derivatives traversing the network 
backward tend to become very small. This problem has a direct impact on the learning of the model’s 
parameters. As a result, earlier layers of the network learn slower than the later ones; in extreme cases, 
the training process can stop completely. For a long time, this was a major hurdle when training large 
deep neural networks.
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A similar problem arises when the network generates some large loss during the training phase. This 
situation can lead to very large gradients that generate significant updates to the model’s parameters 
and instability for the network. Again, in extreme cases, we can encounter an overflow in the values 
of the parameters. One of the remedies to circumvent an exploding gradient is to use a technique 
called gradient clipping. As the name suggests, we can clip the gradients during backpropagation to 
keep them below a certain threshold. Moreover, instead of clipping the values in the gradient vectors, 
we clip by the norm of the vector. For example, using a clip norm equal to 1.0 rescales the values 
inside the vector so that its norm equals 1.0; the vector [0.9, 100.0] is clipped to [0.00899, 0.999995].

The relevant step in Python is shown here:

torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)

Inside the train method, we use clip_grad_norm_ to keep the gradients within a specific range, 
a hyperparameter that’s configured by trial and error.

Setting the learning rate

The second technique that’s used in the notebook concerns the learning rate. In the Training the model 
section of Chapter 7, Summarizing Wikipedia Articles, we dealt with the concept of the learning rate 
and how to choose its value. The strategy was to move fast at the beginning of the training process 
(high rate) and slow down as we reached the minimum of the loss (low rate). A similar approach has 
been adopted in this section, where the learning rate decays at each epoch by the gamma parameter:

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, 
gamma=0.95)

As we saw earlier, the learning rate for the first epoch is equal to 0.5. By multiplying this number 
with gamma, we get 4.75, which is the second epoch’s learning rate. During the third epoch, it is 
4.75 ∙ 0.95 = 4.51 , and so forth.

After training the model for 20 epochs, we achieve the following performance:

...

    print('valid loss: %5.2f, valid ppl: %8.2f, time: %5.2fs' % 
(val_loss, val_ppl, elapsed))

>>

...

-----------------------------------------------------------

valid loss: 5.56, valid ppl: 260.72, time: 1631.64s

-----------------------------------------------------------
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Notice that both the validation loss and the model’s perplexity are reported in the output. In addition, 
the increased time to complete this experiment indicates how resource-hungry the training process 
is. So, you should wait a while before running this code fragment on your computer entirely. The next 
section discusses a convenient tool for visualizing various parameters while creating a new model.

Using TensorBoard

Despite the astonishing results achieved by models based on deep learning, there is a frequent 
complaint that their high performance is not easily interpretable. Especially in industries that require 
clear explanations of the features involved, such as financial institutions, there is an urgent need for 
tools that shed light on the internals of the models. Moreover, sharing the outcome of the training and 
evaluation phases is critical for many businesses and research groups. This section presents a tool that 
can perform the previous tasks seamlessly and be customized according to our needs.

TensorBoard is an open-source tool that can track the output of machine learning experiments and 
visualize different quantities during the workflow. In addition, it helps us interactively understand 
the training progress better and choose the appropriate model between competing implementations. 
Originally, the tool was part of TensorFlow, but now, it’s a separate project that can also be incorporated 
into PyTorch. In this section, we will describe the most basic steps.

Initially, we must create a writer object to log various information. By default, all the logged data 
is placed under the runs directory inside a folder named with the current date and time:

from torch.utils.tensorboard import SummaryWriter

# Writer will output to ./runs/ directory by default

writer = SummaryWriter()

print('Current run is: ' + writer.get_logdir())

>>

Current run is: runs\Sep20_19-28-21_CL-5CG10472MV

The following code snippet demonstrates the way to create the conceptual graph of our model’s 
structure (more about this graph shortly):

# Create a sample input for the transformer.

inputs, targets = obtain_batch(val_data, 0)

input_mask = generate_square_subsequent_mask(bptt).to(device)

# Log the graph of the model.

writer.add_graph(model, (data.to(device), input_mask))
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After each training iteration, writer logs the current values for three measures – Loss, Time, 
and Perplexity:

...

            print('epoch: %3d, %5d/%5d batches, lr: %02.2f, ms/
batch: %5.2f, loss: %5.2f, ppl: %8.2f' % (epoch, batch, num_
batches, lr, ms_per_batch, cur_loss, ppl))

            # Log the summary for the loss.

            writer.add_scalar('Loss/train', cur_loss, (epoch-
1)*num_batches+batch)

            # Log the summary for the time.

            writer.add_scalar('Time/train', ms_per_batch, 
(epoch-1)*num_batches+batch)

            # Log the summary for the time.

            writer.add_scalar('Perplexity/train', ppl, (epoch-
1)*num_batches+batch)

...

The three real numbers are stored using the add_scalar method. Then, we can monitor the 
training progress inside the browser. TensorBoard includes a built-in web server for this task that we 
can launch like so:

%load_ext tensorboard

%tensorboard --logdir runs/

>> Reusing TensorBoard on port 6006

After a few seconds, the web server that hosts the framework will start listening on port 6006. Then, 
TensorBoard can be accessed at http://localhost:6006/. Finally, the output in Figure 9.4 
helps us monitor how the different quantities change over time:

http://localhost:6006/
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Figure 9.4 – Evaluation loss for two runs in TensorBoard

In this visualization, we are contrasting two versions of the candidate models filtered from the list of 
Runs using the Sep20|Sep21 regular expression. The comparison is based on the evaluation loss shown 
in the two plots. The model from the Sep20 experiment exhibits better performance. An interesting 
observation concerns the knee point of the evaluation loss in the tenth epoch. At this point, loss receives 
its lowest value, after which it starts to rise again. Does this ring a bell? In the Creating validation sets 
section of Chapter 8, Detecting Hateful and Offensive Language, we had a similar discussion on how 
validation sets help identify the most efficient model version. Fortunately, the code saves the best 
version after each epoch, so we can easily apply the early stopping technique.

We can also interact with the conceptual graph of the model. The graph visualizes the different 
components and how they are interconnected. Therefore, it is a convenient way to examine the 
model’s structure and ensure it conforms to our intended design. For example, in Figure 9.5, we can 
see the two encoder layers included in the network. Clicking on each box allows us to examine their 
internal structures:
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Figure 9.5 – Part of the conceptual graph of the transformer model

Besides being a tool for scrutinizing models and getting better insights, TensorBoard has another role. 
In today’s working environments, sharing the work between different stakeholders is critical because it 
enables better visibility, reproducibility, and collaboration. TensorBoard.dev is a free public service that 
can host our experiments online. Executing the following command initiates the process of gathering 
all the relevant files from the local repository and uploading them to the service:

!tensorboard dev upload \

  --logdir runs \

  --name "My ML4Text experiment" \

  --description "Comparing two language models" \

  --one_shot

>>

***** TensorBoard Uploader *****
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This will upload your TensorBoard logs to https://tensorboard.
dev/ from the following directory:

runs

...

At this point, a URL is created so that you can upload your TensorBoard logs and obtain a permalink:

Please visit this URL to authorize this application: https://
accounts.google.com/o/oauth2/auth?response_type=code&client_
id=XXX

New experiment created. View your TensorBoard at: https://
tensorboard.dev/experiment/D62fZGL4S66Q08C2alEvoQ/

...

Using the previous link, we can share our work with others, who can visit and interact with TensorBoard, 
and the training output runs without the need to install any additional software. The link provided in 
this example allows us to examine the two experiments in this section. However, beware that we have 
only scratched the tool’s surface. TensorBoard can offer many more functionalities, such as representing 
graphically high dimensional embeddings, multimedia, and many more. Note that another frequently 
used tool with similar functionality is Weights & Biases (https://wandb.ai/). Next, we will 
present a way to add a more informal and perhaps funny style to our visualizations.

Visualizing using XKCD

Before we conclude this section, let’s create two visualizations related to the previous language model 
using the xkcd plots from matplotlib. XKCD (https://xkcd.com/) is a famous webcomic 
based on statements on life and love, and mathematical, programming, and scientific inside jokes. We 
can use the XKCD style to present the validation loss for each epoch and include an annotation that 
points to the best model. First, we will consider 20 sample validation losses:

# Sample validation loss for 20 epochs.

val_loss_array = [5.79, 5.63, 5.599, 5.603, 5.502, 5.503, 5.52, 
5.523, 5.52, 5.477, 5.49, 5.513, 5.511, 5.533, 5.518, 5.549, 
5.509, 5.533, 5.539, 5.542]

Then, we will plot the data points along with the annotation for the best model:

with plt.xkcd():

    fig = plt.figure()

https://wandb.ai/
https://xkcd.com/
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    ax = fig.add_axes((0.1, 0.2, 0.8, 0.7))

    ax.set_yticks([5.5, 5.6, 5.7, 5.8])

    plt.xticks(np.arange(20), np.arange(1, 21))

    ax.set_ylim([5.4, 5.9])

    # Include an annotation pointing to the best model.

    ax.annotate(

        'HERE YOU WILL FIND\nTHE BEST MODEL!',

        xy=(9, 5.5), arrowprops=dict(arrowstyle='->'), 
xytext=(5, 5.7))

The output is shown in Figure 9.6:

Figure 9.6 – Validation loss in each epoch

We can also print the architecture of the model that was created earlier using the XKCD style:

# Create an xkcd plot that shows the model's architecture.

with plt.xkcd():

    fig, ax = plt.subplots(figsize=(12, 11))

    ax.axis('off')

    ax.set_xticks([])

    ax.set_yticks([])

    # Include an annotation with the model's architecture.
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    ax.annotate(best_model, xy=(0.2, 0.))

    # Draw the figure.

    stick_figure(ax, x=.03, y=.6, radius=.02, quote='What a 
model!')

Figure 9.7 shows part of the visualization:

Figure 9.7 – The language model’s architecture

Observe the two encoder layers that are part of the model’s structure. XKCD plots can be handy for 
generating humorous graphs or used instead of hand-drawn sketches. A significant portion of this 
book was dedicated to how to create visualizations of the data, models, or obtained results. So, you are 
now fully equipped to use this knowledge for your work. In the next section, we will put a pre-trained 
language model into action to create a generative chatbot.

Creating a generative chatbot
After our previous short journey on language modeling, let’s focus on the second type of conversational 
agent and implement a generative chatbot. To make the interaction more enjoyable, we will use a 
pre-trained model that has been specifically designed for this task. Additionally, we will wrap the 
implementation around two graphical user interfaces (GUIs) that facilitate the interaction with 
the model. Finally, we will discuss the steps for tuning the pre-trained model on a different dataset.
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Using a pre-trained model

The lack of sufficiently large datasets, processing power, and time are often decisive factors in resorting to 
a pre-trained model. More importantly, tweaking language models is far from a modest task and requires 
much expertise. Thus, to create the chatbot, we will utilize DialoGPT (https://huggingface.
co/docs/transformers/model_doc/dialogpt), a tunable neural conversational response 
generation model for multiturn conversations. DialoGPT is trained on 147M multi-turn dialogs. The 
responses generated by the model are comparable to human response quality under a single-turn 
conversation Turing test. In addition, for efficiency, we will leverage a smaller version of the model 
(https://huggingface.co/microsoft/DialoGPT-medium).

So, let’s load both the actual model and its tokenizer, the module that converts the text into numerical 
inputs for the neural network and vice versa. The code is included in the chatbot-pretrained.
ipynb notebook:

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the models.

model_name = "microsoft/DialoGPT-medium"

gpt2_tokenizer = AutoTokenizer.from_pretrained(model_name)

gpt2_model = AutoModelForCausalLM.from_pretrained(model_name)

The following chat method is responsible for receiving the user input, along with the previous history, 
and generating a response from the bot:

def chat(input, history=[], gen_kwargs=[]):

    # Tokenize the input.

    input_ids = gpt2_tokenizer.encode(input+gpt2_tokenizer.eos_
token, return_tensors='pt')

    # Update the dialogue history.

    bot_input_ids = torch.cat([torch.LongTensor(history), 
input_ids], dim=-1)

    # Generate the response of the bot.

    new_history = gpt2_model.generate(bot_input_ids, **gen_
kwargs).tolist()s

    # Convert the tokens to text.

https://huggingface.co/docs/transformers/model_doc/dialogpt
https://huggingface.co/docs/transformers/model_doc/dialogpt
https://huggingface.co/microsoft/DialoGPT-medium
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    output = gpt2_tokenizer.decode(new_history[0]).
split("<|endoftext|>")

    output = [(output[i], output[i+1]) for i in range(0, 
len(output)-1, 2)]

    return output, new_history

Notice the use of gpt2_tokenizer for the encoding and decoding steps. Additionally, the model 
receives both the user input and the previous dialog history as context, which shows the ability of 
DialoGPT to generate context-consistent responses.

Next, we will simulate a multi-turn dialog generation requesting advice from the chatbot:

# Simulate the chat.

me = ["What is your best advice?", "Does money buy happiness?", 
"Do you have money?", "Did you buy happiness?", "Well done..."]

history = []

for user_input in me:

    output, history = chat(user_input, history, gen_kwargs)

    print("Me:\t", user_input)

    print("Bot:\t", output[len(output)-1][1])

    print("---------------")

The output dialog is as follows:

Me:   What is your best advice?

Bot:   Don't be a loser.

---------------

Me:   Does money buy happiness?

Bot:   It does if you're a loser.

---------------

Me:   Do you have money?

Bot:   I have a lot of money.

---------------

Me:   Did you buy happiness?

Bot:   I bought happiness.

---------------

Me:   Well done...
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Bot:   I'm a happy guy.

---------------

After the previous conversation on money and happiness, we can create an interface to allow a smoother 
interaction with the model.

Creating the GUI

A GUI is an interface with interactive visual components through which users can interact with 
computer software. Wrapping an interface around the language model makes its usage much more 
accessible. The following code snippet shows one of the visual components, which is the text entry box:

import textwrap

import datetime as dt

from tkinter import *

# A GUI for the chat application.

class Chatty:

...

        # Add an input entry box.

        self.input_entry = Entry(bottom_label, bg="#6a747e", 
fg="#EAECEE", font="Helvetica 14")

        self.input_entry.place(relwidth=0.74, relheight=0.07, 
rely=0.0, relx=0.0)

        self.input_entry.focus()

        self.input_entry.bind("<Return>", self.on_enter_
pressed)

...

The specific widget is bound with the on_enter_pressed method. When the user presses Enter 
while typing in the text box, the specific method is called:

    # Method to capture the press of the Enter button.

    def on_enter_pressed(self, event):

        msg = self.input_entry.get()

        self.chatbot(msg)

The user input is now retrieved, and the chatbot method is engaged:

    # Chat with the bot.

    def chatbot(self, msg):
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...

        # Get the bot's response.

        output, self.history = chat(msg, self.history, gen_
kwargs)

        response = f"{output[len(output)-1][1]}\n\n"

        # Show the response on the GUI.

        self.text_area.configure(state=NORMAL)

        self.text_area.tag_config('response', justify='right', 
foreground="black", background="lightgreen", wrap='word', 
rmargin=10)

        self.text_area.insert(END, response, 'response')

        self.text_area.configure(state=DISABLED)

        self.text_area.see(END)

...

Among other tasks, the method retrieves a prediction for the DialoGPT-medium model. The output 
is the interface shown in Figure 9.8:

Figure 9.8 – GUI for the chat application
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For better understanding, try to associate each visual element from the Jupyter notebook and the GUI 
in the preceding figure. We can now type a message in the Entry box area and obtain a response from 
the model. If necessary, we can scroll through the whole history of the conversation. Undoubtedly, 
the interaction is far better, but there is a critical drawback of GUIs created in this way; they cannot 
be shared easily. So, in the next section, we will discuss deploying the same chatbot on the web.

Creating the web chatbot

The effort for creating the web version of the GUI is minimal, as we just need to use one of the many 
libraries that allow us to create interactive web applications in Python. Gradio (https://gradio.
app/) is one of the possible options, and in this section, we will adapt the Python code so that it 
includes HTML tags:

# Chat with the bot using a new input and the previous history.

# Return a basic HTML including the dialogue.

def chat_html(input, history=[]):

    # Skip empty input.

    if not input: return

    output, history = chat(input, history, gen_kwargs)

    # Create the HTML text.

    html_text = "<div class='chatbot'>"

    for tuple in output:

        for i, sen in enumerate(tuple):

            turn = "user" if i%2 == 0 else "bot"

            html_text += "<div class='msg {}'> {}</div>".
format(turn, sen)

        html_text += "</div>"

    return html_text, history

Using the specifics of the gradio module, we can run the chat application on a local web server:

import gradio as gr

# Launch the interface.

gr.Interface(fn=chat_html, theme="default", inputs=[gr.inputs.

https://gradio.app/
https://gradio.app/
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Textbox(placeholder="Hello!"), "state"], outputs=["html", 
"state"], css=css).launch()

>>

Running on local URL:  http://127.0.0.1:7861

The chatbot can be accessed using the previous URL, which leads to the interface shown in Figure 9.9:

Figure 9.9 – GUI for the chat application in the browser

You can now incorporate a similar interface in your Jupyter notebook and allow other people to 
interact with your models. For example, Google Colaboratory (https://colab.research.
google.com/) is an excellent choice for hosting your notebook for online access. If the notebook is 
available from a public code repository (for instance, GitHub), you can also use MyBinder (https://
mybinder.org/).

We can now proceed to the last section, which deals with how to tune a pre-trained model.

Fine-tuning a pre-trained model

Adjusting a pre-trained model to our needs is the most frequent path when building a language model. 
The hard work of optimizing the model’s parameters has already been done for us, and we only need 
a customized dataset to fine-tune it. This is essentially the task in this section. We will focus less on 
a performance-oriented solution, aiming to provide an educational exercise that sheds light on this 
important theme.

https://colab.research.google.com/
https://colab.research.google.com/
https://mybinder.org/
https://mybinder.org/
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For this task, we will incorporate the Cornell Movie-Dialogs Corpus (https://www.cs.cornell.
edu/~cristian/Cornell_Movie-Dialogs_Corpus.html), a large collection of fictional 
conversations extracted from raw movie scripts. The corpus is available from the convokit toolkit, 
which we loaded in the fine_tuning_LM.ipynb notebook:

import convokit

from convokit import Corpus, download

# Load the corpus.

Corpus = Corpus(download('movie-corpus'))

For each conversation, we will extract the sentences and store the results in a training and validation 
file. Notice that for this exercise, we only keep 1,000 conversations for training and 300 for validation. 
For clarity, we will skip a few steps, but the code in the notebook should be self-explanatory. The 
following extract_dialogs method provides the sentences for each dialog:

def extract_dialogs(corpus, split=None):

    dialogs = []

    # Iterate over all conversations.

    for convo in corpus.iter_conversations():

        # Consider only conversations in the specified split of 
the data.

        if split is None or convo.meta['split'] == split:

            dialog_str = ""

            # Get the sentences in the conversation.

            for utterance in convo.iter_utterances():

                dialog_str = dialog_str + " " + utterance.text

            dialogs.append(dialog_str)

    return dialogs

Now, we can call the method and obtain our samples:

samples = extract_dialogs(corpus)

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
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The data from the previous step is stored in a training and validation file. Next, we will reload the 
instances and print an example dialog:

from datasets import load_dataset

# Load the data from the text files.

data = load_dataset("text", data_files={"train": "./data/
cornell_train.csv", "validation": "./data/cornell_val.csv"})

data["train"][15]

>>

{'text': ' Do you know how much I missed you? Welcome home.'}

In this case, the conversation consists of only two sentences. To speed up the training process, we will 
incorporate the small version of the DialoGPT model and tokenize the input data:

from transformers import AutoTokenizer

# Setup tokenization.

model_name = "microsoft/DialoGPT-small"

tokenizer = AutoTokenizer.from_pretrained(model_name, use_
fast=True)

def perform_tokenization(samples):

    return tokenizer(samples["text"])

tokenized_data = data.map(perform_tokenization, batched=True, 
num_proc=4, remove_columns=["text"])

The critical element is to use the Trainer class, which provides a suitable training and evaluation 
loop in PyTorch, optimized for the Hugging Face transformers:

from transformers import AutoModelForCausalLM

from transformers import Trainer, TrainingArguments

# Load the model to be tuned.

model = AutoModelForCausalLM.from_pretrained(model_name)
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name = model_name.split("/")[-1]

# Define the training arguments.

training_args = TrainingArguments(

    f"{name}-finetuned-cornell",

    evaluation_strategy = "epoch",

    learning_rate=2e-5,

    weight_decay=0.01,

    push_to_hub=False,

)

Finally, we can instantiate the trainer and initiate the training process:

# Create the trainer.

trainer = Trainer(

    model=model,

    args=training_args,

    train_dataset=new_dataset["train"],

    eval_dataset=new_dataset["validation"],

)

# Start training the model.

trainer.train()

>>

Epoch    Training Loss  Validation Loss

1    No log    7.098641

2    No log    5.578784

3    No log    5.300162

The process was only performed for three epochs, but we can still observe that the validation loss 
constantly decreases. Narrowing the experiment to three epochs and utilizing a reduced movie corpus 
dataset does not provide exciting results. Hopefully, you understood the basic steps of the fine-tuning 
process and can apply them in another setting. The following section concludes this chapter with an 
alternative approach to performing the same task.
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Tuning using reinforcement learning

So far, the methods we’ve incorporated for building or tuning language models have attacked the 
problem from a certain angle. Using an encoder/decoder architecture variant, we trained models 
to map an input sequence to a response. This approach works well for chit-chat chatbots, but other 
methods are more appropriate when a specific user goal is involved, such as booking a ticket or finding 
a reservation. The reinforcement learning paradigm is a promising avenue for this task, which is why 
it has gained significant attention in recent years.

Reinforcement learning describes a class of problems where the model learns using rewards from a 
sequence of actions. Instead of telling the agent which actions to take, its role is to discover the actions 
that yield the most reward by trial and error. For a quick recap, you can refer to the Reinforcement 
learning section of Chapter 1, Introducing Machine Learning for Text.

In this section, we will utilize the Transformer Reinforcement Learning (trl) library, which allows us to 
train transformer language models with proximal policy optimization (PPO). PPO is a state-of-the-
art technique that provides instructions to the reinforcement learning agent in terms of what actions 
it must follow based on the state of the environment it is currently in. Its benefit is that it performs 
comparably or better than other methods, while its simplicity makes it easy to implement and tune.

The following example is included in the fine_tuning_LM-RL.ipynb notebook and provides a 
gentle introduction to the topic. Again, we will implement a few basic steps to tune a language model 
and, as we did previously, we will use DialoGPT-small:

# Load the models.

model_name = "microsoft/DialoGPT-small"

model = GPT2HeadWithValueModel.from_pretrained(model_name)

model_ref = GPT2HeadWithValueModel.from_pretrained(model_name)

tokenizer = GPT2Tokenizer.from_pretrained(model_name)

# Chat with the bot using a new input and the previous history.

def chat(input, history=[], gen_kwargs=[]):

...

The chat method’s body is the same as the one in the Using a pre-trained model section. Please refer 
to that section for the details. Next, we will create the trainer and define the query:

# Initialize the policy and the trainer.

ppo_config = {'batch_size': 1, 'forward_batch_size': 1}

ppo_trainer = PPOTrainer(model, model_ref, tokenizer, **ppo_
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config)

# Encode a query.

query_text = "Does money buy happiness?"

query_tensor = tokenizer.encode(query_text+tokenizer.eos_token, 
return_tensors="pt")

Notice the usage of model_ref, which keeps the original model as a reference. The training process 
is repeated for five interactions:

for x in range(5):

    response_tensors = []

    pipe_outputs = []

    # Get a response from the chatbot.

    result, history = chat(query_text, [], gen_kwargs)

    response_text = result[0][1]

    response_tensor = tokenizer.encode(response_text+tokenizer.
eos_token, return_tensors="pt")

Calling the chat method with the query generates a response that is evaluated with a reward. The 
polarity of the reward is determined by the presence of certain words in the response. For instance, 
when it contains the word happy, happiness, or fun, the reward is positive and equal to 1.0:

    # Positive reward.

    if response_text.find('happy') >= 0 or response_text.
find('happiness') >= 0 or response_text.find('fun') >= 0:

        print("+ reward: " + response_text)

        reward = [torch.tensor(1.0)]

    # Negative reward.

    else:

        print("- reward: " + response_text)

        reward = [torch.tensor(-1.0)]

Finally, the model can be trained using PPO for each interaction:

    # Train the model with the PPO algorithm.

    ppo_trainer.step([query_tensor[0]], [response_tensor[0]], 
reward)

>>
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+ reward: Money doesn't buy happiness.

+ reward: Buy happiness

- reward: Why am I here?

- reward: Money is so great!

+ reward: So much money... such happiness...

As in the previous fine-tuning task, this small exercise does not provide tangible results but is sufficient 
for educational purposes. Based on the reward function, gpt2_model should now contain the 
necessary changes, which are very few. In our example, the reward was basic and had to do with the 
presence of certain keywords in the output of the language model. In goal-oriented tasks, we need to 
define the appropriate reward that makes sense for the current problem.

In concluding this section, you learned how to create generative chatbots, using either pre-trained 
language models or by creating one from scratch. While compiling a new application-oriented model 
seems preferable, it poses many practical challenges regarding the significant effort involved. For 
that reason, fine-tuning pre-trained language models exploits the benefits of transfer learning and is 
often the preferred choice. Finally, based on the problem under study, by aiming for goal-oriented or 
free-conversation chatbots, we can incorporate a different approach to fine-tune the language models.

Summary
This chapter focused on yet another exciting field in natural language processing related to text generation. 
In this context, we examined chatbots as a convenient case study. In addition, the content included 
many references to previous chapters to urge you to revisit specific topics from a different perspective.

The power of the transformer architecture and the abundance of data has paved the way for more 
elaborate language models. We presented how to create such a model from scratch or fine-tune a 
pre-trained model. During this discussion, we also applied a third type of learning: reinforcement 
learning.

Evaluation metrics are a constant theme throughout this book; this chapter was no exception. We 
used perplexity as an evaluation metric and discussed TensorBoard, which helps us shed light on the 
internal mechanics of deep neural networks. Finally, we worked on creating user interfaces in Python.

The next chapter is the final chapter of this book and deals with another cutting-edge theme in machine 
learning: text clustering.
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Clustering Speech-to-Text 

Transcriptions

When dealing with real-world datasets, the most common situation is that they come unlabeled—
manually labeling each sample is often unrealistic in terms of time and cost. Therefore, it is imperative 
to incorporate methods that can handle datasets of this type. Unsupervised learning algorithms are 
applicable in this case and, in this chapter, we deal with a particular kind for grouping similar data 
under the same category. Expressly, we incorporate clustering methods that allow the transformation 
of raw data into possible actionable insights, for instance, identifying the general theme in each cluster.

While the previous chapters focused mainly on supervised learning techniques, we dedicate the 
current one solely to unsupervised methods. Another differentiation is the creation of the text corpus 
using speech-to-text technology. Next, as the chapter unfolds, we present hard and soft clustering 
techniques, providing insight into their mechanics and putting them into action. Finally, we discuss 
how to evaluate the clustering result.

By the end of the chapter, you will be capable of applying different clustering methods to pertinent 
problems and also understand how to tune their hyperparameters.

In this chapter, we will go through the following topics:

•	 Understanding the different techniques for text clustering

•	 Implementing and configuring the methods for text clustering

•	 Assessing the performance of the implemented systems

•	 Applying and evaluating speech-to-text for creating data
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Technical requirements
The chapter’s code has been truncated in certain parts to facilitate reading the content. However, the 
whole code is available as different Jupyter notebooks in the book’s GitHub repository:

https://github.com/PacktPublishing/Machine-Learning-Techniques-for-
Text/tree/main/chapter-10.

Understanding text clustering
Until now, our primary goal was to assign a predefined label to a piece of text so that we could 
categorize it as spam or ham, label its topic, identify its sentiment, and so forth. In all of those cases, 
the labels were predetermined, which is the distinctive feature of supervised learning. In many other 
situations, however, the labels are not known from the beginning. Consider, for example, collecting 
feedback about a service or product using surveys. Responses to open-ended questions are essential 
to most questionnaires, but detecting similar themes from the answers is tedious if done manually. 
Other examples include news topics, customer call transcriptions, user tweets, and many more. In 
all the previous cases, businesses benefit from discovering insights in the chaos of unstructured data 
and seizing potential opportunities.

Algorithms that learn the structure of the data without any assistance (no labels or classes given) are 
part of unsupervised learning. We already got a flavor of these methods when discussing dimensionality 
reduction techniques for visualization or feature selection in Chapter 3, Classifying Topics of Newsgroup 
Posts, and Chapter 5, Recommending Music Titles. This chapter examines problems from this perspective, 
intending to cluster text data into different categories automatically. Specifically, text clustering is the 
process of dividing a population of samples into various groups such that the data points in the same 
category are more similar than those in other ones—the aim is to locate functional patterns within 
each group and decipher why this happens.

In general, clustering can be divided into two major subgroups:

•	 Hard clustering is about grouping each data observation into a different cluster. For example, 
in a marketing survey, each customer is assigned to just one of the market segments.

•	 Soft clustering is about grouping each observation in more than one category, providing a 
probability or likelihood for each cluster. For example, a recommender system based on customer 
reviews can associate a new user with more than one cluster of products.

Throughout the current chapter, we present methods for both types of clustering. Moreover, using 
speech-to-text, we create the text corpus to be used when incorporating the methods. The audio files 
and the transcriptions are part of the LJ Speech Dataset (https://keithito.com/LJ-Speech-
Dataset/) consisting of 13,100 short audio clips of a single speaker reading passages from seven 
non-fiction books. In our coding examples, we employ a subset of the available corpus. Let’s begin 
with the essential step of preprocessing the input data.

https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/ch10
https://github.com/PacktPublishing/Machine-Learning-Techniques-for-Text/tree/main/ch10
https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
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Preprocessing the data
The first task is to read the file with the meta-information about the corpus. The metadata.csv 
file includes one column with the audio filename and one with its transcription, separated by the | 
symbol. The relevant code is included in the text-clustering.ipynb notebook:

import pandas as pd

# Read the data from the reduced csv file.

data = pd.read_csv('./data/metadata.csv', usecols=range(2), 
names=['audiofile', 'transcription'], sep="|")

data.head()

>>  audiofile  transcription

0  LJ001-0001  Printing, in the only sense with which ...

1  LJ001-0002  in being comparatively modern.

2  LJ001-0003  For although the Chinese took impressio...

3  LJ001-0004  produced the block books, which were th...

4  LJ001-0005  the invention of movable metal letters ...

Unfortunately, the dataset lacks any information about the text source of each audio transcription. 
So, we extract this information by first downloading the content of the seven books:

import os

import requests

from fuzzysearch import find_near_matches

# Download the content of each book.

response = requests.get("https://archive.org/stream/
artscraftsessays00artsrich/artscraftsessays00artsrich_djvu.
txt")

book1 = response.text.replace("\n", " ").replace("  ", " ")

...

Let’s create a method to help us identify the source of each transcription. We employ the find_
near_matches method, which performs a fuzzy search of a string against a reference text (fuzzy, 
in this case, means that it matches patterns approximately):

# Find the book each sentence belongs to.

Def which_book(input):

…
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           books ' ['bo'k1', 'bo'k2', 'bo'k3', 'bo'k4', 
'bo'k5', 'bo'k6', 'bo'k7']

           found = False

           while (found == False):

                 # An input may appear in various books.

                 for book in books:

                       # Check the input against all books.

                       if (len(find_near_matches(input, 
eval(book), max_l_dist=mld)) > 0):

                             found = True

                             res.append(book)

...

Next, we iterate in the list of transcriptions and obtain the identifier of the relevant book:

     # Find the book id(s) per transcription.

     for excerpt in da"a["transcript"on"]:

           id = which_book(excerpt)

           book_df = book_df.appen'({'book'id':id[0]}, ignore_
index=True)

We can now print the number of input sentences per book title:

# Store the book ids.

da'a['book'id'] = book_df

# Calculate the number of transcriptions per book.

da'a['book'id'].value_counts()

>>

book2        5281

book7        4453

unknown      1442

book3        689

book6        489

book5        485

book1        164

book4        97

Name: book_id, dtype: int64
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We observe that the dataset is not balanced as most transcriptions come from book2 and book7. 
Moreover, many samples are not matched with any books (1442 instances). Using a more relaxed 
criterion for the fuzzy search (max_l_dist) can possibly reduce the number of unknown book 
identifiers. In the Performing exploratory data analysis section of Chapter 3, Classifying Topics of 
Newsgroup Posts, and the Treating imbalanced datasets section of Chapter 8, Detecting Hateful and 
Offensive Language, we discussed the issues related to instances monopolizing the dataset. To avoid this 
annoying situation, we balance the corpus and extract the same amount of observations for each book:

# Use a subset of the examples.

data_red = pd.DataFrame()

# Iterate over all books and keep 95 samples for each one.

for i in range(7):

     data_red = data_red.append(data[data.book_id=='book'+ 
str(i+1)].sample(n=95, random_state=123))

data_red = data_red.reset_index(drop=True)

data_red.shape

>> (665, 3)

Let’s now focus on the audio files, extracting the features of one of them:

from pydub import AudioSegment

from pydub.playback import play

# Pick an audio file.

uri = "./data/wav/" + data_red['audiofile'][30] + ".wav"

# Import the audio file.

wav_file = AudioSegment.from_file(file=uri, format="wav")

# Play the audio file.

play(wav_file)

# Print the file's frame rate.

print("Frame rate: " + str(wav_file.frame_rate) + " Hz")

# Print the number of bytes per sample.

print("Bytes per sample: " + str(wav_file.sample_width))

>>
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Frame rate: 22050 Hz

Bytes per sample: 2

The frame rate and the bytes per sample suggest that the audio file is high quality. Next, we extract 
the audio samples and plot the waveform:

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

# Get the samples of the audio file.

samples = wav_file.get_array_of_samples()

time = np.arange(0, wav_file.duration_seconds,1/wav_file.frame_
rate)

# Create the waveform with its data.

waveform_df = pd.DataFrame(columns=['time', 'samples'])

waveform_df['time'] = time

waveform_df['samples'] = samples

# Plot the waveform.

ax = sns.lineplot(data=waveform_df, x=time, y=samples)

The output is the sound wave presented in Figure 10.1:

Figure 10.1 – Waveform of the audio file
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The x axis shows the duration of the file (around 8 seconds), and the y axis is the signal’s amplitude. We 
can also extract a few more interesting statistics for all waveforms, such as their duration, maximum 
amplitude, and word count:

import re

# Store the audio statistics in a dataframe.

statistics_df = pd.DataFrame(columns=['duration_seconds', 
'max', 'word_num', 'book_id'])

i = 1

for index, row in data_red.iterrows():

     i+=1

     wav_file = AudioSegment.from_file(file="./data/wav/" + 
row["audiofile"] + ".wav", format="wav")

     # Store the following as features.

     statistics_df = statistics_df.append({'duration_
seconds':wav_file.duration_seconds,'max':wav_file.max,'word_
num':len(row["transcription"].split()),'book_id':row["book_
id"]}, ignore_index=True)

We can now print the relevant statistics:

statistics_df.head()

>>  duration_seconds    max      word_num    book_id

0  6.392608             18888    16          book1

1  5.788889             20927    19          book1

2  5.150340             29599    17          book1

3  3.455283             29092    10          book1

4  4.952971             22680    16          book1

The specific values can be presented in an elegant way using a pairplot, which allows the plot of 
pairwise relationships between the variables of a dataset in a single figure. So, let’s create a pairplot 
contrasting the statistics calculated previously for each one of the seven books:

# Plot the statistics information.

g = sns.pairplot(statistics_df, hue="book_id", 
palette="Paired", markers=[".", "v", "^", "<", ">", "*", "X"])
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Figure 10.2 shows the specific visualization:

Figure 10.2 – Pairplot of the audio statistics

Based on the previous plots, we do not observe any significant differences among the seven books, 
except for the distribution of the max amplitude for book1. The specific graph is slightly to the right 
compared to the other ones. Next, we proceed with the creation of the dataset. Although the LJ Speech 
Dataset includes the transcriptions of the audio content, we would like to simulate a frequent scenario 
in real-world settings where we have to deal with speech-to-text results.

Using speech-to-text
Speech-to-text, also known as speech recognition, is a forefront technology that allows the accurate 
conversion of speech into text in real-time or batch mode. The recent advances in machine learning 
have led to state-of-the-art systems that can understand natural speech in many languages. Deep 
neural networks have proven to be very efficient for speech recognition, and current systems have an 
error rate of between 3%-5%, depending on the task. As a point of reference, humans achieve similar 
error rates when asked to transcribe recorded audio. Deep neural networks have worked so well for 
the task because of the data’s compositional nature; waveforms can be cut into phonemes, which 
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are the building blocks of words. Then, words can be combined to create sentences. We have seen 
a similar concept during the discussion in the Understanding CNN section of Chapter 8, Detecting 
Hateful and Offensive Language. Processing an image using a convolutional neural network relies on 
layers of low- to high-level features. Let’s see now how to employ speech-to-text to create our dataset.

Interesting fact
Radio Rex, launched in 1922, was the first commercial toy to respond to voice commands. 
Using a one-word vocabulary was enough to make a celluloid dog exit his house. The word 
Rex could trigger the release of a spring attached to an electromagnetic circuit resonant to 500 
Hz (the frequency of E). Unfortunately, the toy had a terrible false-rejection rate.

First, we import the necessary module and set up the recognizer:

import speech_recognition as sr

# Create an instance of the recognizer.

Recognizer = sr.Recognizer()

# Set the energy threshold.

Recognizer.energy_threshold = 300

Iterating over all input files in the dataset, we transcribe the audio using the Google Speech Recognition 
API (https://cloud.google.com/speech-to-text), which is a cloud service for several 
languages that receives audio and transcribes it into text:

# Start the speech-to-text process.

For file in data_red["audiofile"]:

     i+=1

     # Read the audio file.

     Audio_file = sr.AudioFile("./data/wav/" + file + ".wav")

     # Extract the file's audiodata.

     With audio_file as source:

           # Record the audio.

           File_audio_data = recognizer.record(source)

     try:

           # Transcribe speech using Google web API.

           Hypothesis.append(recognizer.recognize_google( 
audio_data=file_audio_data, language="en-US"))

https://cloud.google.com/speech-to-text
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It usually takes several minutes to transcribe all sentences. Hence, to avoid repeating the same 
processing, we store the hypotheses of the recognizer in a file:

     # Save the hypotheses.

     Hypothesis_df = pd.DataFrame(hypothesis, 
columns=['hypothesis'])

     hypothesis_df.to_csv("data/hypothesis.csv", line_
terminator='\n', index=False)

Speech recognition is far from the perfect process and often returns erroneous transcriptions. 
Transcribers who listen to each audio file create ground truth transcriptions manually by writing 
down what is said. Besides being time-consuming, the transcription process can also be erroneous 
due to background noise, slang and accent, mumbling, and so on. Nevertheless, comparing the correct 
human transcriptions with the hypotheses returned by the recognizer is straightforward.

First, we apply a few preprocessing steps in both ground truth transcriptions and the hypotheses:

# Preprocess the ground truth transcriptions and hypotheses.

Ground_truth = data_red["transcription"].to_list()

# Remove the following symbols.

Symbols = ",.!?;"

for I in range(len(ground_truth)):

     ground_truth[i] = ground_truth[i].lower()

     for c in symbols:

           ground_truth[i].replace(c, "")

hypothesis = hypothesis_df['hypothesis'].to_list()

for i in range(len(hypothesis)):

     hypothesis[i] = hypothesis[i].lower()

At last, we can calculate the error of the recognizer using the most typical metric for the task. The 
word error rate (WER) expresses the average number of word mistakes considering three error 
factors. First, substitution errors occur when a reference word gets replaced by another word. Then, 
insertion errors happen when a word that was never spoken is added to the hypothesis. Finally, we 
have deletion errors when reference words are left out of the recognizer’s hypothesis. WER is defined 
according to this formula:

𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
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The denominator expresses the total number of reference words. Notice that the metric can take values 
above one, for instance, when the number of insertions exceeds the number of reference words. Next, 
we measure the WER for our dataset:

from jiwer import wer

# Calculate the WER.

error = wer(ground_truth, hypothesis)

print(error)

>> 0.14171767761083287

Based on the previous output, the recognizer has a 14% WER. The speech recognition task is indeed 
very challenging! The analysis that follows is based on the hypotheses of the recognizer. Still, you can 
easily repeat the same process using ground truth transcriptions. In the following section, we introduce 
the most well-known clustering algorithm.

Introducing the K-means algorithm
The K-means algorithm is a predominant unsupervised learning algorithm for clustering data due to 
its simplicity and efficiency. It aims to group similar items in the form of K clusters. After selecting K 
random centroids, it repeatedly moves them around to group the most similar samples to the center 
of each cluster. As a similarity measure, we can use metrics such as the Euclidean distance, cosine 
similarity (check the Calculating vector similarity section in Chapter 2, Detecting Spam Emails), Pearson 
correlation coefficients (discussed in the Understanding Pearson correlation section of Chapter 5, 
Recommending Music Titles), and so forth. An example can help us to understand the algorithm better. 
Suppose that you are given the dataset shown in the upper-left plot of Figure 10.3:
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Figure 10.3 – K-means basic steps

It’s straightforward to identify that the data points can be grouped into three clusters. Unfortunately, 
K-means does not possess any visual capacity to spot the clusters easily, and it needs to follow a series 
of steps to reach the same assumption. These are summarized as follows:

1.	 Select the number of clusters, K, that we want to identify. Suppose that in this example, K=3.

2.	 Randomly select three distinct data points as the cluster centroids and measure the distance 
from all points to the centroids.

3.	 Assign each point to the closest cluster centroid and calculate the mean of the newly created 
cluster (depicted with the X symbol).

4.	 Repeat steps 2 and 3 using the mean values as centroids.

5.	 Stop the iterations when the clusters no longer change or the maximum number of iterations 
is reached.

6.	 Repeat from step 2 using a new set of random points.

The last step should seem redundant as, in the previous example, we obtain the perfect clustering in 
step 5, right? Well, this is obvious for a human to deduce, but not for the algorithm per se. K-means 
should repeat the same process multiple times to ascertain that the best possible clustering is achieved. 
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After finishing step 5, the algorithm calculates the variation within each cluster. The less variation 
within clusters, the more homogeneous the data points are inside each cluster. Therefore, the solution 
that offers less variation is the chosen one. Let’s expand this discussion a little bit further.

We need a score that measures how well the model clusters the dataset to calculate variation. The 
specific score is called inertia or within-cluster sum-of-squares. It is defined as the sum of distances 
of all the points within a cluster from the cluster centroid. Thus, the K-means algorithm aims to 
minimize the following quantity:

Where, the following applies:

•	 𝜇𝜇𝑗𝑗 =  the 𝑗𝑗𝑡𝑡ℎ  cluster centroid

•	 𝑥𝑥𝑖𝑖 =  the 𝑖𝑖𝑡𝑡ℎ  point in the cluster

•	 𝑛𝑛 =  the total number of points in the cluster

•	 C =  the set of cluster centroids

Generally, a cluster with small inertia is more compact than a cluster with a large sum of squares. The 
inertia calculation is done for each cluster and data points within the cluster. The results are added 
together to measure the inertia of each iteration.

In the previous example, the choice of K is deduced indirectly after the visualization of the dataset, and 
in practice, we commonly resort to this approach. However, a more elegant way to extract the number 
of candidate clusters is presented in the following section. Before incorporating K-means, notice that 
the number of clusters, K, and the number of iterations are hyperparameters for the algorithm.

Putting K-means into action

It’s time to set things in place to cluster the dataset. First, we load the speech-to-text hypotheses from 
the CSV file (data/hypothesis.csv), filtering those samples with an error:

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.preprocessing import normalize

# Read the hypotheses from the speech-to-text.

hypothesis_df = pd.read_csv('data/hypothesis.csv', 
names=['hypothesis'])

hypothesis_df = hypothesis_df[hypothesis_df['hypothesis'] != 

∑𝑚𝑚𝑚𝑚𝑚𝑚𝜇𝜇𝑗𝑗∈𝐶𝐶(‖𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗‖
2)

𝑛𝑛

𝑖𝑖=0
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"<ERROR>"]

data = hypothesis_df['hypothesis']

Next, using tf_idf, we vectorize the input sentences:

# Vectorize the hypotheses.

tf_idf_vectorizor = TfidfVectorizer(stop_words='english',  max_
features = 5000)

tf_idf = tf_idf_vectorizor.fit_transform(data)

tf_idf_norm = normalize(tf_idf)

tf_idf_array = tf_idf_norm.toarray()

We can now apply the principal component analysis to reduce the dimensions of the feature space:

from sklearn.decomposition import PCA

# Perform PCA to reduce the dimensions of the feature space 
with two principal components.

pca = PCA(n_components=2)

pcaComponents = pca.fit_transform(tf_idf_array)

Before incorporating K-means, there is still an unsolved problem pending from the previous section: 
how to decide the optimal number of clusters for the algorithm.

Finding the optimal number of clusters

As already discussed, the K-means algorithm aims to minimize inertia while simultaneously acquiring 
meaningful clusters. Inertia becomes zero when we pick the number of centroids equal to the dataset 
size. In this case, every distance is equal to zero (the point and centroid match), which obviously doesn’t 
provide any helpful insight into the data. Thus, we apply a handy technique called the elbow method 
to balance the tradeoff between coherent and meaningful clusters. The method relies on constructing 
a graph, where the x axis represents the number of clusters and the y axis is the inertia score.

First, we train a model with a small cluster value and calculate the inertia. Then, we increase the cluster 
number by one and repeat the same process. The following code shows the relevant steps in Python 
using one to seven clusters:

from sklearn.cluster import kMeans

# Use the elbow method to extract the optimal number of 
clusters.
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num_clusters = range(1, 7)

kmeans = [kMeans(n_clusters=i, max_iter = 600) for i in num_
clusters]

inertia = [kmeans[i].fit(pcaComponents).inertia_ for i in 
range(len(kmeans))]

plt.plot(num_clusters, inertia)

The output is shown in Figure 10.4:

Figure 10.4 – Extracting the optimal number of clusters using the elbow method

Observe that between points 3 and 4 on the x axis, the curve’s slope changes sharply, thus creating an 
elbow shape. The K value corresponding to this point is the optimal number of clusters, in our case, 
equal to three. Next, we utilize the specific outcome to train a K-means model using 10,000 iterations. 
The created model allows the prediction of the cluster for each point:

# Perform the clustering.

kmeans = kMeans(n_clusters=3, max_iter=10000, algorithm = 
'full', n_init=200)

kmeans_model = kmeans.fit(pcaComponents)

kmeans_pred = kmeans.predict(pcaComponents)

# Plot the clusters.

plt.scatter(pcaComponents[:, 0], pcaComponents[:, 1], c=kmeans_

Elbow point
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pred, s=50, cmap='Paired')

# Plot the cluster centers.

centers = kmeans_model.cluster_centers_

plt.scatter(centers[:, 0], centers[:, 1], c='black', s=300, 
alpha=0.6)

Figure 10.5 shows the outcome of this step:

Figure 10.5 – K-means clustering output

As expected, each sample is clustered into one of three groups. Alright, assigning each point to a 
cluster is one thing, but how can we interpret the outcome of this process?

Interpreting the clustering result

In most clustering tasks, specific domain knowledge is required to transform the clustering result into 
meaningful knowledge. An experienced data scientist can provide valuable insight in this case. When 
text data is involved, we can extract the most relevant cluster words to obtain some intuition of the 
contents of each group. The cluster_top_words method extracts the indices of the predictions 
in each cluster, calculates the mean tf_idf vector of the corresponding predictions, and returns 
the most relevant words. Let’s examine the different steps:

1.	 First, we define the method and get the unique labels:

# Get top words (=num) per cluster.

def cluster_top_words(tf_idf_array, prediction, num):

     # Get the unique labels.
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     labels = np.unique(prediction)

     top_words = []

2.	 Then, we start iterating over all unique labels:

for label in labels:

           # Indices for each cluster.

           idx = np.where(prediction==label)

           # Mean feature values across cluster.

           x_means = np.mean(tf_idf_array[idx], axis = 0)

           # Get the indices to sort x_means.

           sorted = np.argsort(x_means)[::-1][:num]

           # Get the list of words.

           words = tf_idf_vectorizor.get_feature_names()

3.	 Finally, we extract the top words and return the result:

           top = [(words[i], x_means[i]) for i in sorted]

           df = pd.DataFrame(top, columns = ['features', 
'score'])

           top_words.append(df)

     return top_words

We can now call the previous method for obtaining the 15 most relevant words per cluster:

# Get the 15 top words per cluster.

top_words = cluster_top_words(tf_idf_array, kmeans_pred, 15)

The outcome of this step can be visualized using the following code:

# Plot the top words per cluster.

x = np.arange(len(top_words[0]))

for i, df in enumerate(top_words):

     ax = fig.add_subplot(1, len(top_words), i+1)

     ax.barh(x, df.score, align='center', color='#0a7ff2')
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The bar plots of Figure 10.6 inform us about the top words in each cluster:

Figure 10.6 – Top words per cluster

The first cluster includes words such as court, president, government, and oswald, which suggests that 
there is a topic about the assassination of President Kennedy. Indeed, one of the books is entitled The 
Warren Report: The Official Report on the Assassination of President John F. Kennedy. The topic in the 
second cluster seems to be related to cooking due to the prevailing words such as bowl, melted, salt, 
sugar, butter, cup, flour, and tablespoon. Once again, the book entitled Marion Harland’s Cookery 
for Beginners is part of the corpus. Finally, the third cluster includes words such as french, gothic, 
and roman, most probably from the Arts and Crafts Essays book, which discusses decorative arts.

In the next section, we present another commonly used method for clustering.

Introducing DBSCAN
The basic idea behind the density-based spatial clustering of applications with noise (DBSCAN) 
algorithm is that clusters are regions of high point density, separated from other clusters by low point 
density regions. The algorithm takes each point in the dataset to identify the high-density regions and 
checks whether its neighborhood contains a minimum number of points. Unlike K-means, DBSCAN 
does not require manually specifying the number of clusters; it is more immune to outliers and more 
appropriate when the clusters have complex shapes.

To employ the algorithm, we need to set two hyperparameters:

•	 epsilon is the radius of the circle to be created around each point to check the region’s density

•	 minPts determines the minimum number of data points within the circle to label its center as 
a core point.
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All the data points with less than minPts but more than one point in their neighborhood are called 
border points. Finally, data points without any other close neighbor than themselves are known as 
outliers, or noise points.

Notice that the points can be partially located in the previous circle and that minPts includes the 
point itself. Also, when the data space has more the two dimensions, epsilon becomes the radius of 
a hypersphere. In this case, minPts is the minimum number of points in the specific hypersphere.

As in the case of K-means, we show the basic steps of DBSCAN using as input the data points in the 
upper-left plot of Figure 10.7:

Figure 10.7 – DBSCAN basic steps

Looking again at the specific plot, how many clusters can you identify? Most probably two, one big 
and one smaller nested one. The steps of the method are summarized here:

1.	 Select a value for epsilon and minPts. Suppose that in this example, epsilon=1 and minPts=3.

2.	 Choose a random point and check whether the minimum points criterion applies within the 
epsilon radius.

3.	 If the answer to step 2 is positive, label the point as a core point. Otherwise, it is a non-core one.
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4.	 Choose a random core point and cluster together all core points inside the radius. Then, move 
to a core point close to the expanding cluster and repeat.

5.	 A non-core point is part of the same cluster only if it contains at least one core point. In this 
case, it is called a border point.

6.	 Repeat the process for the next cluster starting from step 2. Points not part of any group are 
considered outliers (noise).

We can now proceed and incorporate the algorithm.

Putting DBSCAN into action

DBSCAN is sensitive to the initial values of the hyperparameters and, as in related situations, domain 
knowledge and experimentation are required. Similar to the elbow method in K-means, we can employ 
another implementation of the same technique using the kneed module. The method allows the 
estimation of epsilon, but contrary to the elbow method, we do not solely rely on the plot to extract 
the parameter’s value. It is often difficult to visually identify the knee/elbow point, and the kneed 
module provides its exact value.

In the following code, we use k-nearest neighbors (KNN) to extract the distances between each point 
in the dataset and its five nearest neighbors. Then, we sort the distances in ascending values and create 
the plot to get the point of maximum curvature:

from sklearn.neighbors import NearestNeighbors

from kneed import KneeLocator

# Perform 5-nn to extract the distances.

nn = NearestNeighbors(n_neighbors=5).fit(pcaComponents)

distances, idx = nn.kneighbors(pcaComponents)

distances = np.sort(distances, axis=0)

distances = distances[:,1]

# Find the knee point.

i = np.arange(len(distances))

knee = KneeLocator(i, distances, S=0, curve='convex', 
direction='increasing', interp_method='polynomial')

# Plot the knee.

knee.plot_knee()



Introducing DBSCAN 395

The knee point in Figure 10.8 resides at the intersection of the curve and the dashed vertical line:

Figure 10.8 – Knee point calculation

Next, we print its exact value:

print("Knee point: " + str(distances[knee.knee]))

>> Knee point: 0.007346658772005564

Before using DBSCAN, we must assign a value for the minPts parameter. As a general rule, its value 
should be greater than or equal to the dimensionality of the dataset. Also, the minimum value must 
be chosen to be at least equal to 3. A value set to 1 wouldn’t make sense, as any single point becomes 
a cluster of its own. Using minPts equal to 2 yields the method we will present in the next section. 
The larger or noisier the dataset is, the larger value of minPts is required. A commonly used heuristic 
is to set the value 2 × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  for the parameter. In the following code, we adopt the heuristic 
and set min_samples equal to 4 (2 × 2 ):

from sklearn.cluster import DBSCAN

# Perform the clustering.

db = DBSCAN(eps=distances[knee.knee], min_samples=4, n_jobs=-
1).fit(pcaComponents)

# Get the cluster labels.

labels = db.labels_

# Count the total number of clusters.

num_clusters = len(set(labels)) - (1 if -1 in labels else 0)
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# Count the total number of noise points.

num_noise = list(labels).count(-1)

print('Number of clusters: %d' % num_clusters)

print('Number of noise points: %d' % num_noise)

>>

Number of clusters: 7

Number of noise points: 132

According to the output, there are 7 clusters and 132 outliers. Many noisy points suggest that the 
algorithm is not performing very well. The chosen epsilon value is extremely small, so most of the 
points do not lie in the neighborhood of other points and are treated as outliers.

Assessing DBSCAN

Let’s employ a few metrics to assess the quality of the DBSCAN model better. First, we calculate the 
silhouette coefficient, which quantifies how dense and well-separated the clusters are. The coefficient 
measures the average distance of a point in the cluster to all the other points within the same cluster. 
For the same point, we also calculate the average distance to the points of the closest cluster. Intuitively, 
we would like that the first quantity is as small as possible (density) and the second to be as large as 
possible (separability). Consider the example of Figure 10.9 containing three clusters:

Figure 10.9 – Average distances for the silhouette coefficient

For an individual point, i, we calculate the silhouette coefficient, s(i), using the following formulas:

𝑠𝑠(𝑖𝑖) = 𝑏𝑏(𝑖𝑖) − 𝑎𝑎(𝑖𝑖)
max⁡{𝑎𝑎(𝑖𝑖), 𝑏𝑏(𝑖𝑖)} ⁡𝑎𝑎𝑎𝑎𝑎𝑎⁡𝑏𝑏(𝑖𝑖) = min⁡{𝑏𝑏1(𝑖𝑖), 𝑏𝑏2(𝑖𝑖)} 



Introducing DBSCAN 397

Where, the following applies:

•	 𝑎𝑎(𝑖𝑖) =  the average distance of point i to the points in the cluster

•	 𝑏𝑏(𝑖𝑖) =  the average distance of point i to the closest cluster

•	 𝑏𝑏1(i) =  the average distance of point i to cluster 1

•	 𝑏𝑏2(i) =  the average distance of point i to cluster 2

In ML terminology, a(i) is called cohesion and is an intra-cluster metric, measuring the similarity 
of the points in the same cluster. Conversely, b(i) is called separation and is an inter-cluster metric. 
It refers to the degree to which the clusters don’t overlap. The range of the silhouette coefficient is 
between -1 to 1. As the coefficient approaches the value of 1, the cohesion and separation of the 
clusters as a whole increase. When the coefficient approaches 0, it’s unclear whether point i should 
belong to the right cluster or the one in the middle. Finally, a value close to -1 signifies that point i is 
likely misclassified. The same process is applied to all the other samples in the dataset.

Calculating the coefficient for our example demands just one line of code:

from sklearn import metrics

# Print the model results.

print("Silhouette Coefficient: %0.3f" % metrics.silhouette_
score(pcaComponents, labels))

>> Silhouette Coefficient: 0.231

The output suggests that the score is closer to 0, and there is an overlap between the clusters. In this 
section, we use the silhouette coefficient to assess the quality of the clustering model. Still, the coefficient 
can also be employed to identify the optimal number of clusters for K-means. Notice that the elbow 
method uses only intra-cluster distances in its scoring function, while the silhouette coefficient uses 
both inter- and intra-cluster distances.

Another indicative result of the created DBSCAN model is the distribution of the data points in each 
cluster. The following code shows the specific calculation:

# Get the sample counts in each cluster

counts = np.bincount(labels[labels>=0])

print (counts)

>> [507   5   4   4   4   4   4]

As we can observe, the first cluster includes almost all data points. Another indication of the low 
performance of the algorithm. Finally, let’s plot the clusters as we did with the K-means case:

# Plot the clusters.

colors = ['blue', 'yellow', 'green', 'red', 'black']
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vectorizer = np.vectorize(lambda x: colors[x % len(colors)])

plt.scatter(pcaComponents[:,0], pcaComponents[:,1], 
c=vectorizer(labels))

Figure 10.10 shows the outcome of this step:

Figure 10.10 – DBSCAN clustering output

One of the clusters in the middle monopolizes the data, while there are many outliers depicted in 
black color. Looking at the plot, we observe a large dense area in the middle. Conversely, the three 
edges are less dense. DBSCAN is not a good option in this setting, as there is no drop in the density of 
data points in the middle to detect the boundaries between the clusters, hence the problem with the 
silhouette coefficient we saw earlier. Finally, the algorithm struggles with clusters of varying density, 
leaving out too many extraneous outliers in the more dense clusters.

Let’s now move to the third clustering method presented in the chapter.

Introducing the hierarchical clustering algorithm
Hierarchical clustering is another unsupervised machine learning algorithm that seeks to build a 
hierarchy of clusters. To achieve this aim, it constructs a tree-like structure called a dendrogram 
that shows the hierarchical relationship between objects in a dataset. Typically, there are two ways to 
construct the dendrogram: the agglomerative clustering approach or the divisive clustering one. 
The first option is more common and follows a bottom-up approach by sequentially merging similar 
clusters. In divisive clustering, we put all observations in one big cluster and then successively split the 
clusters. A top-down approach is adopted in this case. Figure 10.11 shows an example of a dendrogram 
with the fusions or divisions made at each successive stage:
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Figure 10.11 – Hierarchical clustering dendrogram

Next, we examine the basic steps of agglomerative clustering. To facilitate understanding, we reuse the 
example from the Extracting word embedding representation section of Chapter 3, Classifying Topics 
of Newsgroup Posts. Again, we visualize the personality traits of users with a personalized grayscale 
vector consisting of five elements (each for each trait). This time we aim to cluster four user profiles, 
as shown in Figure 10.12:

Figure 10.12 – Hierarchical clustering steps
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The basic steps of the process are summarized as follows:

1.	 Compare each user vector with the others and find the most similar pair. In our example, 
User 1 and User 4 are more similar than any other combination (you can visually compare the 
grayscale values in their vectors).

2.	 Merge the two profiles under the same cluster (Cluster 1). Repeat step 1 and use the profile 
vectors and the merged cluster for the comparisons. The pair of User 3 and User 4 is now the 
most similar combination.

3.	 Merge the two profiles under the same cluster (Cluster 2). As there are only two remaining 
clusters, we stop the iterations.

4.	 Merge Cluster 1 and Cluster 2 to build the dendrogram. Notice the height of the branches, 
which signifies the order that the clusters were formed. The cluster of User 1 and User 2 is 
created earlier than the one for User 3 and User 4. The smaller the height of a branch, the more 
similar the clusters underneath.

Hopefully, this simplistic visual example provides a basic intuition of the algorithm. Once more, we 
encounter the concept of similarity between two objects. Euclidean distance is often the selected 
distance measure in hierarchical clustering, but most algorithm implementations allow the selection 
of other metrics. After choosing a distance metric, we must also determine where the distance between 
two clusters is measured.

There are a few different options for this task, such as complete linkage, the longest distance between 
two points in each cluster. Single linkage is the shortest distance between two points in each cluster. 
Finally, the average linkage is the average distance between all points of one cluster to all points of 
another one. These different options are part of the linkage function we need to set before executing 
the hierarchical clustering algorithm. In the next section, we see how to incorporate a linkage function 
after putting the algorithm into action.

Putting hierarchical clustering into action

First, let’s create the dendrogram for our dataset using agglomerative clustering and ward as the 
linkage function:

from scipy.cluster import hierarchy

dendro = hierarchy.dendrogram(hierarchy.linkage(pcaComponents, 
method='ward'))

# Cut at 1.5 to get 3 clusters.

plt.axhline(y=1.5, color='black', linestyle='--')

Instead of measuring the distance directly, ward analyzes clusters’ variance to generate groups that 
minimize the within-cluster variance. The output dendrogram is illustrated in Figure 10.13:
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Figure 10.13 – Hierarchical clustering output

By default, the Euclidean distance is used as a distance metric. Due to the size of the dataset, much of 
the information in the lower part of the dendrogram is crammed. As a reference, the x axis includes 
664 points that we cannot see. Notice how the cluster pairs are formed and the different heights of the 
branches. Based on the visualization, we can cut the tree horizontally at any value of the Euclidean 
distance and acquire a specific number of clusters. In the example, the horizontal dashed line at 1.5 
yields three clusters.

As with the K-means case, we extract the top words per cluster. In the following code snippet, we 
create an agglomerative clustering model and predict the cluster for each hypothesis:

from sklearn.cluster import AgglomerativeClustering

# Perform the clustering.

agg = AgglomerativeClustering(n_clusters=3, 
affinity='euclidean', linkage='ward')

agg_model = agg.fit_predict(pcaComponents)

Then, we proceed to the extraction of the 15 top words per cluster:

# Get the 15 top words per cluster.

top_words = cluster_top_words(tf_idf_array, agg.labels_, 15)
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The following code provides the visualization of the results:

# Plot the top words per cluster.

x = np.arange(len(top_words[0]))

for i, df in enumerate(top_words):

     ax = fig.add_subplot(1, len(top_words), i+1)

     ax.barh(x, df.score, align='center', color='#0a7ff2')

Finally, the output is shown in Figure 10.14:

Figure 10.14 – Top words per cluster

The results are similar to the one for K-means, and we did not become wiser with the result of DBSCAN. 
However, perhaps getting similar output from two different methods makes us more confident in the 
validity of the claims we can make later in the analysis. Until now, we discussed three methods for 
hard clustering. The key takeaway is that it allows us to put each sample in one of several clusters. You 
must determine which information is included in each cluster and give it a label. In the final section, 
the focus moves to an algorithm for soft clustering.

Introducing the LDA algorithm
In Chapter 3, Classifying Topics of Newsgroup Posts, we examined how to classify the instances of a 
newsgroup dataset into predefined topics. A related situation is encountered when we want to assign a 
topic label to a piece of text without prior knowledge of the available topics. Topic modeling refers to 
the task of identifying groups of items, in our case words, that best describes a collection of documents 
or sentences. The topics emerge during the specific process; hence they are called latent.
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A popular topic modeling technique to extract the hidden topics from a given corpus is the latent 
dirichlet allocation (LDA). Strictly speaking, LDA is not a clustering algorithm because it produces a 
distribution of groupings over the sentences being processed. However, as a document can be a part of 
multiple topics, LDA resembles a soft clustering algorithm in which each data point belongs to more 
than one cluster. For this reason, we made it part of this chapter. As in the case of hard clustering, we 
need the expert opinion of humans to evaluate the outcome of LDA.

The main idea behind the algorithm is that each document can be described as a distribution of 
topics and each topic as a distribution of words. LDA aims to find the topics of a document based on 
the words in it. Starting with M documents and a set of N words included in the documents, we can 
create the left plot of Figure 10.15:

Figure 10.15 – The main idea behind LDA

The plot shows the connections of each document to the words it contains. Identifying the topics requires 
checking all the possible connections for all documents. This task is not practical, and to alleviate this 
limitation, we introduce a latent layer with three topics, as illustrated in the right plot. The number of 
connections is reduced as the documents connect only to topics and the latter to words. LDA must 
find the weight of the connections, which are depicted schematically with the different thickness levels 
of each connection line. For example, doc_2 may consist of the following mix: 42% topic_1, 36% 
topic_2, and 22% topic_3. The most important hyperparameter for the algorithm is the number of 
clusters to aim for. In the next section, we incorporate LDA to solve the main problem of this chapter.

Putting LDA into action

First, by using the code in the topic-modeling.ipynb notebook, we obtain a fresh copy of the 
dataset from the CSV file:

# Read the hypotheses from the speech-to-text.

hypothesis_df = pd.read_csv('data/hypothesis.csv', 
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names=['hypothesis'], skiprows=1)

corpus = hypothesis_df[hypothesis_df['hypothesis'] != 
"<ERROR>"]

Next, we tokenize the sentences and perform a light preprocessing of the words:

# Tokenize the input text.

def tokenize(text):

     tokens = []

     doc = nlp(text)

     for word in doc:

           # Checks whether the word consists of whitespace.

           if word.orth_.isspace(): continue

           # Does the word resemble to a URL?

           elif word.like_url: tokens.append('URL')

           # Does the word resemble to an email?

           elif word.like_email: tokens.append('EMAIL')

           else: tokens.append(word.lower_)

     return tokens

We can also load a set of stop words, for cleaning the dataset later:

import spacy

sp = spacy.load("en_core_web_sm")

# Define the list of stopwords.

stop_words = sp.Defaults.stop_words

Let’s define the standard method for lemmatization:

# Lemmatize the input word.

def lemmatize(text):

     sentence = sp(text)

     lemma = ''

     for token in sentence:
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           lemma += token.lemma_ + ' '

     return lemma.strip()

An important design decision for this test is to focus solely on nouns and adjectives for the input:

# Keep only the nouns and adjectives.

def filter_nouns_adj(text):

     sentence = sp(text.lower())

     nouns_adj = ''

     for token in sentence:

           if token.pos_ == "NOUN" or token.pos_ == "ADJ":

                 nouns_adj += token.text + ' '

     return nouns_adj.strip()

The extract_text_for_lda method sequentially calls the previously presented methods to 
process the input:

# Extract the text for LDA.

def extract_text_for_lda(text):

     filtered_text = filter_nouns_adj(text)

     tokens = tokenize(filtered_text)

     tokens = [t for t in tokens if t not in stop_words]

     tokens = [lemmatize(t) for t in tokens]

     tokens = [t for t in tokens if len(t) > 4]

     return tokens

Then, we use the method to parse the data from the corpus:

text_data = []

# Parse all data from the corpus.

for row, col in corpus.iterrows():

     tokens = extract_text_for_lda(col.hypothesis)

     text_data.append(tokens)
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We are now ready to incorporate LDA, but first, a necessary transformation is required:

import gensim

import pickle

# Transform the data for gensim.

dictionary = gensim.corpora.Dictionary(text_data)

corpus = [dictionary.doc2bow(text) for text in text_data]

# Save the data in a file.

pickle.dump(corpus, open('./data/corpus.pkl', 'wb'))

dictionary.save('./data/dictionary.gensim')

Finally, we can create the LDA model using three clusters and obtain the four most common words 
for each topic:

# Create and save the model for 3 topics.

ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_
topics=3, id2word=dictionary, passes=15, random_state=123)

ldamodel.save('./data/model3.gensim')

# Get the 4 most common words per topic.

topics = ldamodel.print_topics(num_words=4)

for t in topics:

     print(t)

>>

(0, '0.007*"court" + 0.006*"government" + 0.006*"public" + 
0.006*"morning"')

(1, '0.011*"great" + 0.008*"paper" + 0.006*"modern" + 
0.006*"service"')

(2, '0.019*"letter" + 0.012*"plant" + 0.012*"water" + 
0.009*"animal"')
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The first topic seems to be related to the assassination of President Kennedy. To verify this assumption, 
let’s extract the distribution of topics for a random input text related to this event:

# Text to identify a topic.

test = 'the assassination of president kennedy took place at 
dallas, texas'

test = extract_text_for_lda(test)

test_bow = dictionary.doc2bow(test)

print(ldamodel.get_document_topics(test_bow))

>> [(0, 0.6977441), (1, 0.11669667), (2, 0.18555923)]

Indeed, the sentence consists of a mix: 70% topic 1, 12% topic 2, and 18% topic 3. Next, we create a 
handy interactive visualization to examine the newly constructed LDA model:

import pyLDAvis

import pyLDAvis.gensim_models

# Load the corpus.

dictionary = gensim.corpora.Dictionary.load('./data/dictionary.
gensim')

corpus = pickle.load(open('./data/corpus.pkl', 'rb'))

# Read the LDA model, store and show the visualization in HTML.

lda = gensim.models.ldamodel.LdaModel.load('./data/model3.
gensim')

lda_display = pyLDAvis.gensim_models.prepare(lda, corpus, 
dictionary, sort_topics=False)

pyLDAvis.save_html(lda_display, './data/lda-3-topics.html')

pyLDAvis.display(lda_display)s
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The output is an HTML page that can be loaded in any web browser, as illustrated in Figure 10.16:

Figure 10.16 – Interactive visualization of the LDA model output

The specific web page is interactive and offers a visual interpretation of the different topics. Although 
the text is not clear enough, we can immediately identify a few basic elements. First, there are three 
clusters (circles), which are pretty much spaced apart. Circles that are closer signify similar topics, 
while the cluster size measures the topic’s importance relative to the whole dataset. Finally, we can 
hover over each circle and observe which terms are most frequent in that topic.

After the presentation of LDA, we have reached the end of the chapter. The aim was to avoid excessive 
mathematical formulation for the different methods and provide a more intuitive explanation of their 
mechanics. Hopefully, you should be sufficiently equipped to understand the major design choices 
when incorporating each clustering method.
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Summary
This chapter focused on text clustering, intending to segregate samples with distinct characteristics 
and assign them to different groups. Clustering is one of the most important areas in data science 
simply because most datasets come unlabeled. Here, we tried to provide a good overview of the topic, 
but in reality, we only scratched the tip of this gigantic iceberg.

In this context, we presented both hard and soft clustering methods to categorize speech-to-text 
transcriptions. Specifically, speech recognition, often coupled with the techniques presented in this 
book, provides a convenient way to gather text data. Finally, we presented methods that allow the 
automatic configuration of the clustering algorithms, along with metrics, to assess their performance.

We have finally reached the end of the book! But stay tuned, as much more excitement is waiting for 
the years to come!
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cross-validation  88
C-Support Vector Classification  48
curse of dimensionality

reference link  71

D
data

preprocessing  377-382
visualizing  14
visualizing, types  14

data classification
data, obtaining  39
data, preprocessing  42, 43
features, extracting  43
performing  39
Support Vector Machines 

algorithm, using  44-46
testing sets, creating  40, 41
training sets, creating  40, 41

data-driven-declarative  14
data-driven-exploratory  14
data explosion  3
data preprocessing

executing  31
input, tokenizing  32-34
stop words, removing  34-36
words, lemmatizing  38
words, stemming  36, 37

decision boundaries  11
decision trees  94

contracting  94-99
deep learning (DL)  5, 288
deep neural networks (DNNs)  155, 280
delimiter  32
dendrogram  398
dense layer  155

Density-based spatial clustering 
of applications with noise 
(DBSCAN) algorithm  392-394

assessing  396-398
working with  394-396

dependency grammars
creating  221, 222

depth-first (DFS) algorithm  265
derivative  134
DialoGPT

reference link  363
dimensionality reduction  12

executing  71, 72
direct machine translation (DMT)

using  217
divisive clustering  398
domain knowledge  21
dot product

calculating  30
dot-product attention  283
dropout  160, 327

E
early stopping  325
ELIZA

reference link  343
encoder/decoder architecture

deciphering  241, 242
ensemble learning  93
entropy  94, 95
epoch  143
Euclidean distance  29, 85
Euclidean norm  46
evaluation  14, 15
example-based machine translation 

(EBMT)  230-234
exploding gradient  355
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exploratory data analysis
data, cleaning  169, 170
genres, adding  173, 174
helpfulness score, exploiting  125-130
information, extracting from data  174-180
Levenshtein distance, applying  170-173
Pearson correlation  181
performing  115-118, 168, 169
ratings of products, exploiting  122-124
Software dataset, using  118-122
word count of reviews, extracting  124, 125

Exploratory Data Analysis (EDA)  21
performing  65-70

Extensible Markup Language (XML)  269
extractive summarization  263

performing  274-277
eXtreme Gradient Boosting 

(XGBoost)  318-321
classifying with  321, 322

extrinsic evaluation  346

F
False Positive Rate (FPR)  58
fastText tool

URL  110
using  110, 111

feature-based grammar  225
feature engineering  21

examples  21, 22
feature map  336
features  21
five-fold cross-validation  88
forget gate  245
F-score  57

calculating  57

F-Shaped Pattern For Reading Web Content
reference link  262

G
Gale-Church algorithm  234
Gated Recurrent Units (GRUs)  277, 247
Gaussian-Bernoulli RBM  209
Gaussian distribution  209
General Language Understanding 

Evaluation (GLUE)   303
URL  303

generative-based chatbots  342
generative chatbot

creating  362
GUI, creating  365-367
pre-trained model, fine-tuning  368-371
pre-trained model, using  363-365
reinforcement learning, used 

for tuning  372-374
web chatbot, creating  367, 368

Generative Pre-Trained Transformer 
2 (GPT-2)  345

Google Colaboratory
reference link  368

gradient boosting  316-318
gradient clipping  355
gradient descent  138
gradient learning

dealing, with variations of  354, 355
Gradio

URL  367
graphical user interfaces (GUIs)  362

creating  365-367
grid search  201
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H
handwritten text

clustering  191, 192
hard clustering  376
hate speech  303

versus offensive speech  303
hierarchical clustering algorithm  398-400

working with  400-402
Hugging Face

URL  342
hyperparameters  47
hypertext markup language (HTML)  267

I
imbalanced datasets

treating  326
inductive learning  8
information gain  94, 95
input gate  246
interlingual machine translation (IMT)

using  228, 229
intrinsic  346
inverse document frequency (idf)  27
IOB format  224
Iterative Dichotomiser 3 (ID3)  94

J
JavaScript Object Notation (JSON)  269

K
Kaggle  318
Keras  159
kernel functions  46
k-fold  88

K-means algorithm  385-387
clustering result, interpreting  390-392
optimal number of clusters, 

searching  389, 390
K-Nearest Neighbors (KNN)  84, 85, 394

classification, performing  90-92
comparing, to baseline model  92, 93
cross-validation, performing  88, 89
feature extraction, performing  87

knowledge-based systems  216
knowledge graph (KG)  291

L
L2 regularization  147
label encoding  23

using  23
language modeling  345, 346

building  352-354
dealing, with variations of 

gradient learning  354
learning rate, setting  355, 356
perplexity  346, 347
TensorBoard, using  356-360
visualizing, with XKCD  360-362

language models
perplexity  349, 350

language phenomenon  2
Laplace smoothing  53
latent dirichlet allocation (LDA)  403
Latent Semantic Analysis (LSA)  183
layer normalization  287
LDA algorithm  402, 403

working with  403-408
learning rate  138

setting  355, 356
lemmatization  38
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Levenshtein distance
applying  170-173

Linear discriminant analysis (LDA)  79
implementing  80-84

linear regression  131-137
linkage function  400
local minimum  93
logic gates  150
logistic regression  137, 138

classification, performing  145, 146
gradient descent  138-142
regularization, applying  146-148
training and test sets, creating  144
using  142, 143

longest common subsequence (LCS)  297
long short term memory  

(LSTM)  243-247, 277, 304
loss function  132

M
machine learning (ML)  63, 285
machine learning (ML) , techniques

reinforcement learning  13
semi-supervised learning  13
supervised learning  8
taxonomy  8
unsupervised learning  12

machine translation (MT)  214, 215
Manhattan distance  86
manifold  195
masked language model (MLM)  305
masking  288
matrix factorization  199
Mean Absolute Error (MAE)  203
memory-based  186
memory-based collaborative recommenders

using  186-189

minibatch  139
mini-batch gradient descent (MGD)  139
Minkowski distance  86
ML paradigm  7, 8
model-based  186
model-based collaborative systems

music recommendations, extracting  204-206
parameter tuning, performing  201-203
recommendation model, training  204
using  199-201

monolingual corpus  6
multiclass classification  64
multi-head attention  282-286
multilingual corpus  6
multinomial logistic regression 

algorithm  137
multiple linear regression  131
music recommendations

extracting  183-186, 204-206
MyBinder

URL  368

N
Naïve Bayes algorithm  51, 52

key points  53
named-entity resolution (NER)

executing  222-225
narrow AI  4
natural language generation (NLG)  342
Natural Language Processing 

(NLP)  6, 26, 170
neural machine translation, with 

Transformer and Keras
reference link  288

neural network (NN)  148, 149, 156, 286
artificial neurons  153, 154
classification, performing  159-163
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logic gates  150
perceptrons  151, 152

neuron  148
next sentence prediction (NSP)  306
n-grams  26
non-parametric models  85
normal distribution  209
normalization  75
numerical example  347-349

O
Occam’s razor principle  102
offensive speech  303

versus hate speech  303
one-hot encoding  24

using  24, 25
optimization problems  133
OPUS

reference link  230
ordinary least squares (OLS)  131
output gate  247
overfitting  47

P
pairplot

using  381
parameter tuning

performing  201-203
parametric models  85
parse tree  218
part-of-speech (POS) tagging

executing  217, 218
peaking phenomenon  71
Pearson correlation  181
perceptrons  151, 152

perplexity (PPL)  346
calculating  350-352
numerical example  347-349
of language models  349, 350

pooling layer  336
Porter stemmer  36

reference link  36
positional encoding  281, 282
posterior probability  51
precision  56

calculating  57
Precision-Recall curve  61

creating  61, 62
predictive modeling  8
pre-trained model

fine-tuning  368-371
using  363-365

Principal Component Analysis 
(PCA)  72, 189

example  73-78
implementing  80-84
using  192-194

principle of least squares  132
prior probability  51
proximal policy optimization (PPO)  372
pruning  99
Pythagorean theorem  85, 86
PyTorch

URL  342

Q
quotes

scraping  266-269
Quotes to Scrape

URL  266
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R
Radial Basis Function (RBF) kernel  48
random forest algorithm  93, 94

classification, performing  99-102
random oversampling  326
random undersampling  326
recall  56

calculating  57
Recall-Oriented Understudy for Gisting 

Evaluation (ROUGE)  296, 346
Receiver Operator Characteristic 

(ROC) curve  58
benefits  58
creating  59

recommendation model
training  204

recommender systems  166, 167
Rectified Linear Units (ReLU)  154
Recurrent neural networks (RNNs)  240
regression  12
regular expressions (regexp)  32

examples  33, 34
regularization  147
reinforcement learning  13

used, for tuning  372-374
residual connection  286
residuals  132
Restricted Boltzmann Machines 

(RBMs)  208, 209
retrieval  342
retrieval-based chatbot

creating  343-345
Rivest-Shamir-Adleman (RSA)  199
robots exclusion standard  266

reference link  266
Root Mean Squared Error (RMSE)  202
rule-based machine translation (RBMT)  216

S
seed  88
self-attention  282
semi-supervised learning  13
sentiment analysis  114
separation  397
seq2seq model

creating  247-252
testing  254-257
training  252-254

Sequence-to-sequence (seq2seq) 
learning  239, 240

encoder/decoder architecture, 
deciphering  241, 242

long short-term memory units  243-247
sigmoid function  137
silhouette coefficient  396
similarity score  320
simple linear regression  131
Singular Value Decomposition 

(SVD)  100, 183
applying  189, 190

social networks  302
soft clustering  376
soft margin classification  47
softmax function  279
spaCy

URL  218
spam detection  18
spam detector  18

implementing  18-21
sparse  25
Speech Dataset

reference link  376
speech recognition  382-385
speech-to-text

using  382
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spiders  264
standardization  75
statistical machine translation (SMT)

models, creating  237-239
translation problem, modeling  237

stemming  36
stochastic gradient descent (SGD)  138
stop words  34
strong AI  4
stump  314
summarization methods

reference link  275
supervised learning  8, 114

classification  9-11
predictive modeling  9
regression  12

Support Vector Machines (SVM)  44, 71, 147
hyperparameters, adjusting  46, 47
implementing  48
using, for data classification  44-46

support vectors  45

T
Tab-Separated Values (TSV)  269
tag clouds  19
t-distributed Stochastic Neighbor 

Embedding (t-SNE)
applying  197, 199
using  194-197

teacher forcing  243
TensorBoard

using  356-360
TensorFlow  159
TensorFlow Hub  312
Tensor Processing Unit (TPU)  304
tensors  312
Term Document Matrix (TDM) matrix  25

term frequency-inverse document 
frequency (tf-idf) encoding  27

using  27-29
vector similarity, calculating  29, 31

term frequency (tf)  27
text clustering  376

hard clustering   376
soft clustering  376

text generation  342
text summarization  262-264

performance, measuring  296-299
tf-idf  183
token count encoding  25

using  25-27
tokenization  32
topic classification  64, 65
topic modeling  402
transfer and generation grammars

creating  225-228
transfer-based machine translation (TBMT)

context-free grammar (CFG), 
creating  218-220

dependency grammar, creating  221, 222
named-entity resolution (NER), 

executing  222-225
part-of-speech (POS) tagging, 

executing  217, 218
transfer and generation grammars, 

creating  225-228
using  217

transfer learning  304
transformer  280, 281

dataset, loading  288-292
decoder part, finalizing  287
encoder part, finalizing  286, 287
implementing  288
learning rate, adapting  294-296
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model, training  292-294
multi-head attention  282-286
positional encoding  281, 282

translation performance
measuring  257-260

trigrams  26
True Positive Rate (TPR)  58
truth table  150
Turing test  342
Tweepy

URL  302

U
unigrams  26
unique identifier  115
unsupervised learning  12

association analysis  12
clustering  12
dimensionality reduction  12
method  72

V
validation sets

creating  323
datasets, extracting  324, 325
myth of Icarus, learning  323

vanishing gradient  243
variance  73
Vauquois triangle  214
vector arithmetic  107
vector similarity

calculating  29-31
voluntary response bias  152

W
weak AI  4
web chatbot

creating  367, 368
web crawlers  264
web scraping  264-266

book reviews  270-273
quotes  266-269
Wikipedia articles  273, 274

Weights & Biases
URL  360

Wikipedia articles
scraping  273, 274

word clouds  19
reference link  19

word embedding  104-106
word embedding representation

classification, performing  108, 109
extracting  103, 104
vector arithmetic, performing  106-108

Word Error Rate (WER)  346
WordNet  38

reference link  38
word representations, extracting  22

label encoding, using  23
one-hot encoding, using  24, 25
tf-idf encoding, using  27-29
token count encoding, using  25-27

world wide web (WWW)  264
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X
XKCD

used, for visualizing  360-362
XML Path Language (XPath)  273

Z
zero-frequency problem  53

example  53, 54
ZeroR  93





Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at packt.com and as a print book customer, you 
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of 
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packt.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Production-Ready Applied Deep Learning

Tomasz Palczewski, Jaejun (Brandon) Lee, Lenin Mookiah

ISBN: 9781803243665

•	 Understand how to develop a deep learning model using PyTorch and TensorFlow 

•	 Convert a proof-of-concept model into a production-ready application 

•	 Discover how to set up a deep learning pipeline in an efficient way using AWS 

•	 Explore different ways to compress a model for various deployment requirements 

•	 Develop Android and iOS applications that run deep learning on mobile devices 

•	 Monitor a system with a deep learning model in production 

•	 Choose the right system architecture for developing and deploying a model 

https://packt.link/9781803243665


425Other Books You May Enjoy

Data Cleaning and Exploration with Machine Learning

Michael Walker

ISBN: 9781803241678

•	 Explore essential data cleaning and exploration techniques to be used before running the most 
popular machine learning algorithms 

•	 Understand how to perform preprocessing and feature selection, and how to set up the data 
for testing and validation 

•	 Model continuous targets with supervised learning algorithms 

•	 Model binary and multiclass targets with supervised learning algorithms 

•	 Execute clustering and dimension reduction with unsupervised learning algorithms 

•	 Understand how to use regression trees to model a continuous target 

https://packt.link/9781803241678


426

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Machine Learning Techniques for Text, we’d love to hear your thoughts! If you 
purchased the book from Amazon, please click here to go straight to the Amazon review page for this 
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://authors.packtpub.com
https://packt.link/r/1-803-24238-8


427

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily!

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

 

https://packt.link/free-ebook/9781803242385

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803242385

	Cover
	Title Page
	Copyright and Credits
	Acknowledgments
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introducing Machine 
Learning for Text
	The language phenomenon
	The data explosion
	The era of AI
	Relevant research fields
	The machine learning paradigm
	Taxonomy of machine learning techniques
	Supervised learning
	Unsupervised learning
	Semi-supervised learning
	Reinforcement learning

	Visualization of the data
	Evaluation of the results
	Summary

	Chapter 2: Detecting Spam Emails
	Technical requirements
	Understanding spam detection
	Explaining feature engineering

	Extracting word representations
	Using label encoding
	Using one-hot encoding
	Using token count encoding
	Using tf-idf encoding

	Executing data preprocessing
	Tokenizing the input
	Removing stop words
	Stemming the words
	Lemmatizing the words

	Performing classification
	Getting the data
	Creating the train and test sets
	Preprocessing the data
	Extracting the features
	Introducing the Support Vector Machines algorithm
	Understanding Bayes’ theorem

	Measuring classification performance
	Calculating accuracy
	Calculating precision and recall
	Calculating the F-score
	Creating ROC and AUC
	Creating precision-recall curves

	Summary

	Chapter 3: Classifying Topics of Newsgroup Posts
	Technical requirements
	Understanding topic classification
	Performing exploratory data analysis
	Executing dimensionality reduction
	Understanding principal component analysis
	Understanding linear discriminant analysis
	Putting PCA and LDA into action

	Introducing the k-nearest neighbors algorithm
	Performing feature extraction
	Performing cross-validation
	Performing classification
	Comparison to the baseline model

	Introducing the random forest algorithm
	Contracting a decision tree
	Performing classification

	Extracting word embedding representation
	Understanding word embedding
	Performing vector arithmetic
	Performing classification
	Using the fastText tool

	Summary

	Chapter 4: Extracting Sentiments from Product Reviews
	Technical requirements
	Understanding sentiment analysis
	Performing exploratory data analysis
	Using the Software dataset
	Exploiting the ratings of products
	Extracting the word count of reviews
	Exploiting the helpfulness score

	Introducing linear regression
	Putting linear regression into action

	Introducing logistic regression
	Understanding gradient descent
	Using logistic regression
	Creating training and test sets
	Performing classification
	Applying regularization

	Introducing deep neural networks
	Understanding logic gates
	Understanding perceptrons
	Understanding artificial neurons
	Creating artificial neural networks
	Training artificial neural networks
	Performing classification

	Summary

	Chapter 5: Recommending Music Titles
	Technical requirements
	Understanding recommender systems
	Performing exploratory data analysis
	Cleaning the data
	Extracting information from the data
	Understanding the Pearson correlation

	Introducing content-based filtering
	Extracting music recommendations

	Introducing collaborative filtering
	Using memory-based collaborative recommenders
	Applying SVD
	Clustering handwritten text
	Applying t-SNE
	Using model-based collaborative systems
	Introducing autoencoders

	Summary

	Chapter 6: Teaching Machines to Translate
	Technical requirements
	Understanding machine translation
	Introducing rule-based machine translation
	Using direct machine translation
	Using transfer-based machine translation
	Using interlingual machine translation

	Introducing example-based machine translation
	Introducing statistical machine translation
	Modeling the translation problem
	Creating the models

	Introducing sequence-to-sequence learning
	Deciphering the encoder/decoder architecture
	Understanding long short-term memory units
	Putting seq2seq in action

	Measuring translation performance
	Summary

	Chapter 7: Summarizing Wikipedia Articles
	Technical requirements
	Understanding text summarization
	Introducing web scraping
	Scraping popular quotes
	Scraping book reviews
	Scraping Wikipedia articles

	Performing extractive summarization
	Performing abstractive summarization
	Introducing the attention mechanism
	Introducing transformers
	Putting the transformer into action

	Measuring summarization performance
	Summary

	Chapter 8: Detecting Hateful and Offensive Language
	Technical requirements
	Introducing social networks
	Understanding BERT
	Pre-training phase
	Fine-tuning phase
	Putting BERT into action

	Introducing boosting algorithms
	Understanding AdaBoost
	Understanding gradient boosting
	Understanding XGBoost

	Creating validation sets
	Learning the myth of Icarus
	Extracting the datasets

	Treating imbalanced datasets
	Classifying with BERT
	Training the classifier
	Applying early stopping

	Understanding CNN
	Adding pooling layers
	Including CNN layers

	Summary

	Chapter 9: Generating Text in Chatbots
	Technical requirements
	Understanding text generation
	Creating a retrieval-based chatbot
	Understanding language modeling
	Understanding perplexity
	Building a language model

	Creating a generative chatbot
	Using a pre-trained model
	Creating the GUI
	Creating the web chatbot
	Fine-tuning a pre-trained model

	Summary

	Chapter 10: Clustering Speech-to-Text Transcriptions
	Technical requirements
	Understanding text clustering
	Preprocessing the data
	Using speech-to-text
	Introducing the K-means algorithm
	Putting K-means into action

	Introducing DBSCAN
	Putting DBSCAN into action
	Assessing DBSCAN

	Introducing the hierarchical clustering algorithm
	Putting hierarchical clustering into action

	Introducing the LDA algorithm
	Putting LDA into action

	Summary

	Index
	Other Books You May Enjoy



